1.Exploration of pharmacodynamic substances and potential mechanisms of Huazhuo Sanjie Chubi Decoction in treatment of gouty arthritis based on UPLC-Q-Exactive Orbitrap-MS technology and network pharmacology.
Yan XIAO ; Ting ZHANG ; Ying-Jie ZHANG ; Bin HUANG ; Peng CHEN ; Xiao-Hua CHEN ; Ming-Qing HUANG ; Xue-Ting CHEN ; You-Xin SU ; Jie-Mei GUO
China Journal of Chinese Materia Medica 2025;50(2):444-488
Based on ultra-high performance liquid chromatography-quadrupole-Exactive Orbitrap mass spectrometry(UPLC-Q-Exactive Orbitrap-MS) technology and network pharmacology, this study explored the pharmacodynamic substances and potential mechanisms of Huazhuo Sanjie Chubi Decoction in the treatment of gouty arthritis(GA). UPLC-Q-Exactive Orbitrap-MS technology was used to identify the components in Huazhuo Sanjie Chubi Decoction, and the qualitative analysis of its active ingredients was carried out, with a total of 184 active ingredients identified. A total of 897 active ingredient targets were screened through the PharmMapper database, and 491 GA-related disease targets were obtained from the OMIM, GeneCards, CTD databases. After Venn analysis, 60 intersecting targets were obtained. The component target-GA target network was constructed through the Cytoscape platform, and the STRING database was used to construct a protein-protein interaction network, with 16 core targets screened. The core targets were subjected to Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses, and the component-target-pathway network was constructed. It was found that the main active ingredients of the formula for the treatment of GA were phenols, flavonoids, alkaloids, and terpenoids, and the key targets were SRC, MMP3, MMP9, REN, ALB, IGF1R, PPARG, MAPK1, HPRT1, and CASP1. Through GO analysis, it was found that the treatment of GA mainly involved biological processes such as lipid response, bacterial response, and biostimulus response. KEGG analysis showed that the pathways related to the treatment of GA included lipids and atherosclerosis, neutrophil extracellular traps(NETs), IL-17, and so on. In summary, phenols, flavonoids, alkaloids, and terpenoids may be the core pharmacodynamic substances of Huazhuo Sanjie Chubi Decoction in the treatment of GA, and the pharmacodynamic mechanism may be related to SRC, MMP3, MMP9, and other targets, as well as lipids and atherosclerosis, NETs, IL-17, and other pathways.
Drugs, Chinese Herbal/therapeutic use*
;
Network Pharmacology
;
Arthritis, Gouty/metabolism*
;
Chromatography, High Pressure Liquid/methods*
;
Humans
;
Mass Spectrometry/methods*
;
Protein Interaction Maps/drug effects*
2.Mechanism related to bile acids metabolism of liver injury induced by long-term administration of emodin.
Jing-Zhuo TIAN ; Lian-Mei WANG ; Yan YI ; Zhong XIAN ; Nuo DENG ; Yong ZHAO ; Chun-Ying LI ; Yu-Shi ZHANG ; Su-Yan LIU ; Jia-Yin HAN ; Chen PAN ; Chen-Yue LIU ; Jing MENG ; Ai-Hua LIANG
China Journal of Chinese Materia Medica 2025;50(11):3079-3087
Emodin is a hydroxyanthraquinone compound that is widely distributed and has multiple pharmacological activities, including anti-diarrheal, anti-inflammatory, and liver-protective effects. Research indicates that emodin may be one of the main components responsible for inducing hepatotoxicity. However, studies on the mechanisms of liver injury are relatively limited, particularly those related to bile acids(BAs) metabolism. This study aims to systematically investigate the effects of different dosages of emodin on BAs metabolism, providing a basis for the safe clinical use of traditional Chinese medicine(TCM)containing emodin. First, this study evaluated the safety of repeated administration of different dosages of emodin over a 5-week period, with a particular focus on its impact on the liver. Next, the composition and content of BAs in serum and liver were analyzed. Subsequently, qRT-PCR was used to detect the mRNA expression of nuclear receptors and transporters related to BAs metabolism. The results showed that 1 g·kg~(-1) emodin induced hepatic damage, with bile duct hyperplasia as the primary pathological manifestation. It significantly increased the levels of various BAs in the serum and primary BAs(including taurine-conjugated and free BAs) in the liver. Additionally, it downregulated the mRNA expression of farnesoid X receptor(FXR), retinoid X receptor(RXR), and sodium taurocholate cotransporting polypeptide(NTCP), and upregulated the mRNA expression of cholesterol 7α-hydroxylase(CYP7A1) in the liver. Although 0.01 g·kg~(-1) and 0.03 g·kg~(-1) emodin did not induce obvious liver injury, they significantly increased the level of taurine-conjugated BAs in the liver, suggesting a potential interference with BAs homeostasis. In conclusion, 1 g·kg~(-1) emodin may promote the production of primary BAs in the liver by affecting the FXR-RXR-CYP7A1 pathway, inhibit NTCP expression, and reduce BA reabsorption in the liver, resulting in BA accumulation in the peripheral blood. This disruption of BA homeostasis leads to liver injury. Even doses of emodin close to the clinical dose can also have a certain effect on the homeostasis of BAs. Therefore, when using traditional Chinese medicine or formulas containing emodin in clinical practice, it is necessary to regularly monitor liver function indicators and closely monitor the risk of drug-induced liver injury.
Emodin/administration & dosage*
;
Bile Acids and Salts/metabolism*
;
Animals
;
Male
;
Liver/injuries*
;
Chemical and Drug Induced Liver Injury/genetics*
;
Drugs, Chinese Herbal/adverse effects*
;
Humans
;
Rats, Sprague-Dawley
;
Mice
;
Rats
3.Research progress in machine learning in processing and quality evaluation of traditional Chinese medicine decoction pieces.
Han-Wen ZHANG ; Yue-E LI ; Jia-Wei YU ; Qiang GUO ; Ming-Xuan LI ; Yu LI ; Xi MEI ; Lin LI ; Lian-Lin SU ; Chun-Qin MAO ; De JI ; Tu-Lin LU
China Journal of Chinese Materia Medica 2025;50(13):3605-3614
Traditional Chinese medicine(TCM) decoction pieces are a core carrier for the inheritance and innovation of TCM, and their quality and safety are critical to public health and the sustainable development of the industry. Conventional quality control models, while having established a well-developed system through long-term practice, still face challenges such as relatively long inspection cycles, insufficient objectivity in characterizing complex traits, and urgent needs for improving the efficiency of integrating multidimensional quality information when confronted with the dual demands of large-scale production and precision quality control. With the rapid development of artificial intelligence, machine learning can deeply analyze multidimensional data of the morphology, spectroscopy, and chemical fingerprints of decoction pieces by constructing high-dimensional feature space analysis models, significantly improving the standardization level and decision-making efficiency of quality evaluation. This article reviews the research progress in the application of machine learning in the processing, production, and rapid quality evaluation of TCM decoction pieces. It further analyzes current challenges in technological implementation and proposes potential solutions, offering theoretical and technical references to advance the digital and intelligent transformation of the industry.
Machine Learning
;
Drugs, Chinese Herbal/standards*
;
Quality Control
;
Medicine, Chinese Traditional/standards*
;
Humans
4.Iron and siRNA co-encapsulated ferritin nanocages induce ferroptosis synergistically for cancer therapy.
Danni LIU ; Yaoqi WANG ; Qi SUN ; Dong MEI ; Xiaoling WANG ; Yan SU ; Jie ZHANG ; Ran HUO ; Yang TIAN ; Siyu LIU ; Shuang ZHANG ; Chunying CUI
Acta Pharmaceutica Sinica B 2025;15(1):526-541
Ferroptosis has received great attention as an iron-dependent programmed cell death for efficient cancer therapy. However, with the accumulation of iron in tumor cells, the antioxidant system is activated by reducing glutathione (GSH) with glutathione peroxidase 4 (GPX4), which critically limits the ferroptosis therapeutic effect. Herein, an iron and GPX4 silencing siRNA (siGPX4) co-encapsulated ferritin nanocage (HFn@Fe/siGPX4) was developed to enhance ferroptosis by disruption of redox homeostasis and inhibition of antioxidant enzyme synergistically. The siGPX4 were loaded into the nanocages by pre-incubated with iron, which could significantly improve the loading efficiency of the gene drugs when compared with the reported gene drug loading strategy by ferritin nanocages. And more iron was overloaded into the ferritin through the diffusion method. When HFn@Fe/siGPX4 was taken up by human breast cancer cell MCF-7 in a TfR1-mediated pathway, the excess iron ions in the drug delivery system could for one thing induce ferroptosis by the production of reactive oxygen species (ROS), for another promote siGPX4 escaping from the lysosome to exert gene silencing effect more effectively. Both the in vitro and in vivo results demonstrated that HFn@Fe/siGPX4 could significantly inhibit tumor growth by synergistical ferroptosis. Thus, the developed HFn@Fe/siGPX4 afforded a combined ferroptosis strategy for ferroptosis-based antitumor as well as a novel and efficient gene drug delivery system.
5.A synthetic peptide, derived from neurotoxin GsMTx4, acts as a non-opioid analgesic to alleviate mechanical and neuropathic pain through the TRPV4 channel.
ShaoXi KE ; Ping DONG ; Yi MEI ; JiaQi WANG ; Mingxi TANG ; Wanxin SU ; JingJing WANG ; Chen CHEN ; Xiaohui WANG ; JunWei JI ; XinRan ZHUANG ; ShuangShuang YANG ; Yun ZHANG ; Linda M BOLAND ; Meng CUI ; Masahiro SOKABE ; Zhe ZHANG ; QiongYao TANG
Acta Pharmaceutica Sinica B 2025;15(3):1447-1462
Mechanical pain is one of the most common causes of clinical pain, but there remains a lack of effective treatment for debilitating mechanical and chronic forms of neuropathic pain. Recently, neurotoxin GsMTx4, a selective mechanosensitive (MS) channel inhibitor, has been found to be effective, while the underlying mechanism remains elusive. Here, with multiple rodent pain models, we demonstrated that a GsMTx4-based 17-residue peptide, which we call P10581, was able to reduce mechanical hyperalgesia and neuropathic pain. The analgesic effects of P10581 can be as strong as morphine but is not toxic in animal models. The anti-hyperalgesic effect of the peptide was resistant to naloxone (an μ-opioid receptor antagonist) and showed no side effects of morphine, including tolerance, motor impairment, and conditioned place preference. Pharmacological inhibition of TRPV4 by P10581 in a heterogeneous expression system, combined with the use of Trpv4 knockout mice indicates that TRPV4 channels may act as the potential target for the analgesic effect of P10581. Our study identified a potential drug for curing mechanical pain and exposed its mechanism.
6.Dorsal CA1 NECTIN3 Reduction Mediates Early-Life Stress-Induced Object Recognition Memory Deficits in Adolescent Female Mice.
Yu-Nu MA ; Chen-Chen ZHANG ; Ya-Xin SUN ; Xiao LIU ; Xue-Xin LI ; Han WANG ; Ting WANG ; Xiao-Dong WANG ; Yun-Ai SU ; Ji-Tao LI ; Tian-Mei SI
Neuroscience Bulletin 2025;41(2):243-260
Early-life stress (ES) leads to cognitive dysfunction in female adolescents, but the underlying neural mechanisms remain elusive. Recent evidence suggests that the cell adhesion molecules NECTIN1 and NECTIN3 play a role in cognition and ES-related cognitive deficits in male rodents. In this study, we aimed to investigate whether and how nectins contribute to ES-induced cognitive dysfunction in female adolescents. Applying the well-established limited bedding and nesting material paradigm, we found that ES impairs recognition memory, suppresses prefrontal NECTIN1 and hippocampal NECTIN3 expression, and upregulates corticotropin-releasing hormone (Crh) and its receptor 1 (Crhr1) mRNA levels in the hippocampus of adolescent female mice. Genetic experiments revealed that the reduction of dorsal CA1 (dCA1) NECTIN3 mediates ES-induced object recognition memory deficits, as knocking down dCA1 NECTIN3 impaired animals' performance in the novel object recognition task, while overexpression of dCA1 NECTIN3 successfully reversed the ES-induced deficits. Notably, prefrontal NECTIN1 knockdown did not result in significant cognitive impairments. Furthermore, acute systemic administration of antalarmin, a CRHR1 antagonist, upregulated hippocampal NECTIN3 levels and rescued object and spatial memory deficits in stressed mice. Our findings underscore the critical role of dCA1 NECTIN3 in mediating ES-induced object recognition memory deficits in adolescent female mice, highlighting it as a potential therapeutic target for stress-related psychiatric disorders in women.
Animals
;
Female
;
Mice
;
CA1 Region, Hippocampal/metabolism*
;
Cell Adhesion Molecules/metabolism*
;
CRF Receptor, Type 1/metabolism*
;
Memory Disorders/etiology*
;
Mice, Inbred C57BL
;
Nectins/genetics*
;
Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors*
;
Recognition, Psychology/physiology*
;
Stress, Psychological/complications*
7.Clinical efficacy of periodontal endoscopy-assisted subgingival scaling and root planning and its effect on psy-chology and quality of life in patients with periodontitis
Qiubao SU ; Ningxiang WANG ; Mei ZHANG ; Juan WU
Journal of Prevention and Treatment for Stomatological Diseases 2024;32(1):50-56
Objective To investigate the clinical efficacy and effects of periodontal endoscope(PE)-assisted subgin-gival scaling and root planning(SRP)and traditional SRP on the psychological and quality of life of patients with peri-odontitis.Methods This study was reviewed and approved by the Ethics Committee,and informed consent was ob-tained from the patients.Patients with periodontitis who were treated in the Department of Periodontology,Nanjing Sto-matological Hospital,Medical School of Nanjing University from April 2018 to December 2022 with residual periodontal pockets(PD≥5 mm)6 weeks after traditional SRP treatment were enrolled,and the residual periodontal pockets were further treated with PE-assisted SRP(PE+SRP).After 6 weeks of traditional SRP treatment and 3 months of PE+SRP treatment,clinical indicators,including plaque index(PLI),probing depth(PD),clinical attachment loss(CAL)and bleeding on probing(BOP),were measured,and periodontal tissue self-awareness scale scores,oral health impact profile-14(OHIP-14)score and dental fear scale(DFS)score were collected.Moreover,visual analog scale(VAS)scores were col-lected after traditional SRP and PE-assisted SRP treatments.Results Twenty-three patients with periodontitis,includ-ing 832 sites of 486 affected teeth,were included in the clinical study.Three months after PE+SRP treatment,all clini-cal periodontal indicators,PLI(t = 9.254,P<0.001),PD(t = 50.724,P<0.001),CAL(t = 22.407,P<0.001)and BOP(t = 9.217,P<0.001),were significantly improved.Compared with traditional SRP(VAS:2.48±1.70),the pain caused by PE+SRP(VAS:2.57±1.80)was not significantly different(t = 0,192,P = 0.850).There was no significant dif-ference in the scores of the periodontal tissue self-awareness scale between the two groups(t = 1.485,P = 0.152).The OHIP-14(SRP:12.13±7.63;PE+SRP:10.26±5.25,t =-1.589,P = 0.126)and DFS(SRP:40.70±12.63;SRP+PE:41.57±12.61,t = 0.404,P = 0.690)scores were not significantly different.Conclusion All clinical periodontal indi-cators were significantly improved after PE-assisted SRP treatment of residual periodontal pockets,and compared with traditional SRP,PE-assisted SRP had no negative impact on the quality of life or psychological status of patients with periodontitis.Therefore,PE+SRP can be promoted in clinical practice.
8.Exploration of New Pathways for Intelligent Transformation and Upgrading of Chinese Medicine Processing under the Con-text of"New Quality Productive Forces"
Lin LI ; Weidong LI ; Lianlin SU ; De JI ; Hongli YU ; Yabo SHI ; Xi MEI ; Yu LI ; Mingxuan LI ; Jiuba ZHANG ; Tulin LU
Journal of Nanjing University of Traditional Chinese Medicine 2024;40(7):653-660
The current production of Chinese herbal decoction pieces faces several issues including strong subjectivity,unstable quality,low production efficiency,and a lack of intelligent systems.In order to expedite the intelligent transformation and upgrading of Chinese medicine processing,this paper delves deeply into the problems and challenges encountered in establishing a digital and intel-ligent production model for Chinese herbal pieces.Addressing the slow progress in fundamental research on traditional Chinese medi-cine processing mechanisms,the absence of online digital quality characterization techniques,the low level of production equipment in-telligence,and the lack of evaluation standards for high-quality decoction pieces,this paper proposes a"New Quality Productive Forces"formation approach driven by technological innovation.Through interdisciplinary integration methods,the paper explores the mechanisms of Chinese medicine processing in depth,clarifies the correlation between the processing procedures and the"medicinal properties-quality"relationship,and employs bionic sensing and artificial intelligence to achieve a holistic quality characterization of decoction pieces.Additionally,the use of cloud-edge collaborative big data systems is proposed to enhance intelligent upgrades of the production lines.The paper also aims to establish a high-quality decoction piece evaluation system integrating"physical-chemical-bio-logical"multimodal data fusion.This approach aims to steer the Chinese medicine processing towards becoming more efficient,precise,and sustainable,thereby promoting high-quality sustainable development of the Chinese herbal decoction industry and providing both theoretical and practical support for the modernization of traditional Chinese medicine.
9.Retrospective study of 70 cases with the head and neck non-parameningeal rhabdomyosarcoma
Ge ZHANG ; Shengcai WANG ; Yan SU ; Zhikai LIU ; Guoxia YU ; Jie ZHANG ; Lin MEI ; Nian SUN ; Yanzhen LI ; Xuexi ZHANG ; Qiaoyin LIU ; Zhiyong LIU ; Xiaodan LI ; Xin NI
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2024;59(2):133-139
Objective:To analyze the treatment outcomes and prognoses of children with head and neck non-parameningeal rhabdomyosarcoma (HNnPM RMS).Methods:A retrospective analysis was performed on the clinical data of children with HNnPM RMS admitted to Beijing Children′s Hospital from September 2012 to September 2022. The clinical features, comprehensive treatment modes and prognoses of the patients were analyzed. The overall survival rate (OS) and event free survival rate (EFS) were calculated using the Kaplan-Meier method, and univariate analysis was performed using the Log-rank test.Results:A total of 70 children were included in this study, 38 males and 32 females, with a median age of 47 months (2-210 months). Pathological subtypes including the embryonal in 27 cases, the alveolar in 36 cases and the spindle cell and sclerosing in 7 cases. Thirty children (83.3%) with alveolar type were positive for FOXO1 gene fusion. All 70 children underwent chemotherapy, including 38 with neoadjuvant chemotherapy and 32 with adjuvant chemotherapy. Sixty of 70 children underwent surgery, of whom, 10 underwent two or more surgeries. There were 63 children underwent radiotherapy, including 54 with intensity-modulated radiation therapy, 4 with particle implantation and 5 with proton therapy. The median follow-up was 45 (5-113) months, the 5-year OS was 73.2%, and the 5-year EFS was 57.7%. Univariate analysis showed lymph node metastasis ( χ2=5.022, P=0.025), distant metastasis ( χ2=8.258, P=0.004), and high Intergroup Rhabdomyosarcoma Study (IRS) group ( χ2=9.859, P=0.029) as risk factors for poor prognosis. Before June 2016, the 5-year OS based on BCH-RMS-2006 scheme was 63.6%, and after 2016, the 5-year OS based on CCCG-RMS-2016 scheme was 79.6%. Conclusion:Multidisciplinary combined standardized treatment can offer good treatment outcome and prognosis for children with HNnPM RMS. Local control is a key to the efficacy of comprehensive treatment.
10.Geographically and Temporally Weighted Regression in Assessing Dengue Fever Spread Factors in Yunnan Border Regions
Xiang Xiao ZHU ; Wang Song WANG ; Fei Yan LI ; Wu Ye ZHANG ; Mei Xue SU ; Tao Xiao ZHAO
Biomedical and Environmental Sciences 2024;37(5):511-520
Objective This study employs the Geographically and Temporally Weighted Regression(GTWR)model to assess the impact of meteorological elements and imported cases on dengue fever outbreaks,emphasizing the spatial-temporal variability of these factors in border regions. Methods We conducted a descriptive analysis of dengue fever's temporal-spatial distribution in Yunnan border areas.Utilizing annual data from 2013 to 2019,with each county in the Yunnan border serving as a spatial unit,we constructed a GTWR model to investigate the determinants of dengue fever and their spatio-temporal heterogeneity in this region. Results The GTWR model,proving more effective than Ordinary Least Squares(OLS)analysis,identified significant spatial and temporal heterogeneity in factors influencing dengue fever's spread along the Yunnan border.Notably,the GTWR model revealed a substantial variation in the relationship between indigenous dengue fever incidence,meteorological variables,and imported cases across different counties. Conclusion In the Yunnan border areas,local dengue incidence is affected by temperature,humidity,precipitation,wind speed,and imported cases,with these factors'influence exhibiting notable spatial and temporal variation.


Result Analysis
Print
Save
E-mail