1.Potential protective effects of red yeast rice in endothelial function against atherosclerotic cardiovascular disease.
Shu-Jun FENG ; Zhi-Han TANG ; Ying WANG ; Xin-Ying TANG ; Tao-Hua LI ; Wei TANG ; Ze-Min KUANG
Chinese Journal of Natural Medicines (English Ed.) 2019;17(1):50-58
Atherosclerotic cardiovascular disease (ASCVD) is the deadliest disease in the world, with endothelial injury occurring throughout the course of the disease. Therefore, improvement in endothelial function is of essential importance in the prevention of ASCVD. Red yeast rice (RYR), a healthy traditional Chinese food, has a lipid modulation function and also plays a vital role in the improvement of endothelial reactivity and cardiovascular protection; thus, it is significant in the prevention and treatment of ASCVD. This article reviews the molecular mechanisms of RYR and its related products in the improvement of endothelial function in terms of endothelial reactivity, anti-apoptosis of endothelial progenitor cells, oxidative stress alleviation and anti-inflammation.
Apoptosis
;
drug effects
;
Atherosclerosis
;
pathology
;
physiopathology
;
prevention & control
;
Biological Products
;
chemistry
;
pharmacology
;
therapeutic use
;
Cardiovascular Diseases
;
pathology
;
physiopathology
;
prevention & control
;
Drugs, Chinese Herbal
;
chemistry
;
pharmacology
;
therapeutic use
;
Endothelium, Vascular
;
cytology
;
drug effects
;
physiology
;
Humans
;
Inflammation
;
prevention & control
;
Lipid Metabolism
;
drug effects
;
Oxidative Stress
;
drug effects
2.Effects of excessive endoplasmic reticulum stress on lung ischemia/reperfusion induced myocardial injury in mice.
Bing-Qian XIANG ; Hui GAO ; Mao-Lin HAO ; Yong-Yue DAI ; Wan-Tie WANG
Chinese Journal of Applied Physiology 2018;34(1):8-13
OBJECTIVE:
To investigate the effects of excessive endoplasmic reticulum stress on lung ischemia/reperfusion (I/R) induced myocardial injury in mice.
METHODS:
Forty healthy SPF male C57BL/6J mice were divided into 4 groups randomly (=10):sham operation group (Sham group), lung I/R group (I/R group), endoplasmic reticulum stress (ERS) pathway agonist Tunicamycin group (TM) and ERS inhibitor 4-phenyl butyric acid group (4-PBA). The model of lung I/R injury was established by clamping the left hilum of lung for 30 min followed by 180 min of reperfusion. In sham group, only sternotomy was performed, the hilum of lung was not clamped, and the mice were mechanically ventilated for 210 min. In TM and 4-PBA groups, TM 1mg/kg and 4-PBA 400 mg/kg were injected intraperitoneally, respectively, at 30 min before establishment of the model. At 180 min of reperfusion, blood samples were collected from the orbit for determination of myocardial enzyme. The animals were then sacrificed, and hearts were removed for determination of light microscope, TUNEL, Caspase 3 enzymatic activity, real-time polymerase chain reaction and Western blot.
RESULTS:
Compared with sham group, the cardiomyocytes had obvious damage under light microscope, and the serum creatine kinase-MB (CK-MB) and lactic dehydrogenase (LDH) activities, apoptosis index and Caspase 3 enzymatic activity were increased significantly, the expressions of p-Jun N-terminalkinase(p-JNK), Caspase 12, CCAAT/enhancer-binding protein homologous protein (CHOP) and glucose regulated protein 78(GRP78) protein and mRNA were up-regulated in I/R, TM and 4-PBA groups (<0.01). Compared with I/R group, the cardiomyocytes damage was obvious under light microscope, and the serum CK-MB and LDH activities, apoptosis index and Caspase 3 enzymatic activity were increased significantly, the expressions of p-JNK, Caspase 12, CHOP and GRP78 protein and mRNA were up-regulated in group TM; while all above changes were relieved in group 4-PBA (<0.01). Compared with TM group, the cardiomyocytes damage was relieved under light microscope, and the serum CK-MB and LDH activities, apoptosis index and Caspase 3 enzymatic activity were decreased significantly, the expressions of p-JNK, Caspase 12,CHOP and GRP78 protein and mRNA were down-regulated in group 4-PBA.
CONCLUSIONS
The excessive endoplasmic reticulum stress participates in myocardial injury induced by lung ischemia/reperfusion (I/R) and inhibit excessive endoplasmic reticulum stress response can relieved myocardial injury.
Animals
;
Apoptosis
;
Caspase 12
;
Caspase 3
;
metabolism
;
Creatine Kinase, MB Form
;
blood
;
Endoplasmic Reticulum Stress
;
Heart Injuries
;
physiopathology
;
Heat-Shock Proteins
;
metabolism
;
L-Lactate Dehydrogenase
;
blood
;
Lung
;
pathology
;
MAP Kinase Kinase 4
;
metabolism
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Myocardium
;
pathology
;
Random Allocation
;
Reperfusion Injury
;
Transcription Factor CHOP
;
metabolism
3.Altered Neuronal Activity in the Central Nucleus of the Amygdala Induced by Restraint Water-Immersion Stress in Rats.
Feng HE ; Hongbin AI ; Min WANG ; Xiusong WANG ; Xiwen GENG
Neuroscience Bulletin 2018;34(6):1067-1076
Restraint water-immersion stress (RWIS), a compound stress model, has been widely used to induce acute gastric ulceration in rats. A wealth of evidence suggests that the central nucleus of the amygdala (CEA) is a focal region for mediating the biological response to stress. Different stressors induce distinct alterations of neuronal activity in the CEA; however, few studies have reported the characteristics of CEA neuronal activity induced by RWIS. Therefore, we explored this issue using immunohistochemistry and in vivo extracellular single-unit recording. Our results showed that RWIS and restraint stress (RS) differentially changed the c-Fos expression and firing properties of neurons in the medial CEA. In addition, RWIS, but not RS, induced the activation of corticotropin-releasing hormone neurons in the CEA. These findings suggested that specific neuronal activation in the CEA is involved in the formation of RWIS-induced gastric ulcers. This study also provides a possible theoretical explanation for the different gastric dysfunctions induced by different stressors.
Action Potentials
;
drug effects
;
physiology
;
Analysis of Variance
;
Animals
;
Central Amygdaloid Nucleus
;
pathology
;
Corticotropin-Releasing Hormone
;
metabolism
;
Disease Models, Animal
;
Gastric Mucosa
;
pathology
;
Gene Expression Regulation
;
physiology
;
Neurons
;
physiology
;
Patch-Clamp Techniques
;
Proto-Oncogene Proteins c-fos
;
metabolism
;
Rats
;
Rats, Wistar
;
Stress, Physiological
;
physiology
;
Stress, Psychological
;
etiology
;
physiopathology
4.Stability of a type 2 diabetes rat model induced by high-fat diet feeding with low-dose streptozotocin injection.
Xiao-Xuan GUO ; Yong WANG ; Kai WANG ; Bao-Ping JI ; Feng ZHOU
Journal of Zhejiang University. Science. B 2018;19(7):559-569
OBJECTIVE:
The present study aims at determining the stability of a popular type 2 diabetes rat model induced by a high-fat diet combined with a low-dose streptozotocin injection.
METHODS:
Wistar rats were fed with a high-fat diet for 8 weeks followed by a one-time injection of 25 or 35 mg/kg streptozotocin to induce type 2 diabetes. Then the diabetic rats were fed with regular diet/high-fat diet for 4 weeks. Changes in biochemical parameters were monitored during the 4 weeks.
RESULTS:
All the rats developed more severe dyslipidemia and hepatic dysfunction after streptozotocin injection. The features of 35 mg/kg streptozotocin rats more resembled type 1 diabetes with decreased body weight and blood insulin. Rats with 25 mg/kg streptozotocin followed by normal diet feeding showed normalized blood glucose level and pancreatic structure, indicating that normal diet might help recovery from certain symptoms of type 2 diabetes. In comparison, diabetic rats fed with high-fat diet presented decreased but relatively stable blood glucose level, and this was significantly higher than that of the control group (P<0.05).
CONCLUSIONS
This model easily recovers with normal diet feeding. A high-fat diet is suggested as the background diet in future pharmacological studies using this model.
Animals
;
Blood Glucose
;
metabolism
;
Diabetes Mellitus, Experimental
;
blood
;
etiology
;
physiopathology
;
Diabetes Mellitus, Type 2
;
blood
;
etiology
;
physiopathology
;
Diet, High-Fat
;
adverse effects
;
Insulin
;
blood
;
Lipids
;
blood
;
Liver
;
drug effects
;
pathology
;
physiopathology
;
Male
;
Malondialdehyde
;
blood
;
Oxidative Stress
;
Rats
;
Rats, Wistar
;
Streptozocin
;
administration & dosage
;
toxicity
;
Superoxide Dismutase
;
blood
;
Uric Acid
;
blood
5.Lipoxin A4 improves erectile dysfunction in rats with type I diabetes by inhibiting oxidative stress and corporal fibrosis.
Kai CUI ; Zhe TANG ; Chuan-Chang LI ; Tao WANG ; Ke RAO ; Shao-Gang WANG ; Ji-Hong LIU ; Zhong CHEN
Asian Journal of Andrology 2018;20(2):166-172
Previous studies have shown that oxidative stress and corporal fibrosis in penile tissues of rats were key pathological factors of erectile dysfunction induced by diabetic mellitus (DMED). Lipoxin A4 (LXA4) was reported to inhibit oxidative stress and fibrosis diseases, while whether it could exert a protective role on erectile function was not clear. Type I diabetic mellitus (DM) was induced in thirty male 10-week-old Sprague-Dawley rats using streptozotocin. Ten weeks later, twenty-two rats with DMED confirmed by an apomorphine test were divided into two groups: the DMED group (n = 11) and the DMED + LXA4 group (n = 11; LXA4 injection daily for 4 weeks). In addition, another ten age-matched rats formed the Control group. We found that erectile function was significantly impaired in the DMED group compared with the Control group, but was improved in the DMED + LXA4 group. Similarly, the over-activated oxidative stress and impaired endothelial function in the DMED group were both improved in the DMED + LXA4 group. Moreover, the DMED group showed serious corporal fibrosis, which was also inhibited by the treatment of LXA4 in the DMED + LXA4 group. Taken together, LXA4 could exert an inhibition role on oxidative stress and fibrosis to improve DMED effectively.
Actins/metabolism*
;
Animals
;
Anti-Inflammatory Agents, Non-Steroidal/pharmacology*
;
Diabetes Mellitus, Experimental/physiopathology*
;
Diabetes Mellitus, Type 1/physiopathology*
;
Erectile Dysfunction/physiopathology*
;
Fibrosis
;
Lipoxins/pharmacology*
;
Male
;
Nitric Oxide/metabolism*
;
Nitric Oxide Synthase Type III/metabolism*
;
Oxidative Stress/drug effects*
;
Penile Erection/drug effects*
;
Penis/pathology*
;
Rats
;
Rats, Sprague-Dawley
6.Protective Effects of Curcumin on Renal Oxidative Stress and Lipid Metabolism in a Rat Model of Type 2 Diabetic Nephropathy.
Bo Hwan KIM ; Eun Soo LEE ; Ran CHOI ; Jarinyaporn NAWABOOT ; Mi Young LEE ; Eun Young LEE ; Hyeon Soo KIM ; Choon Hee CHUNG
Yonsei Medical Journal 2016;57(3):664-673
PURPOSE: Diabetic nephropathy is a serious complication of type 2 diabetes mellitus, and delaying the development of diabetic nephropathy in patients with diabetes mellitus is very important. In this study, we investigated inflammation, oxidative stress, and lipid metabolism to assess whether curcumin ameliorates diabetic nephropathy. MATERIALS AND METHODS: Animals were divided into three groups: Long-Evans-Tokushima-Otsuka rats for normal controls, Otsuka-Long-Evans-Tokushima Fatty (OLETF) rats for the diabetic group, and curcumin-treated (100 mg/kg/day) OLETF rats. We measured body and epididymal fat weights, and examined plasma glucose, adiponectin, and lipid profiles at 45 weeks. To confirm renal damage, we measured albumin-creatinine ratio, superoxide dismutase (SOD), and malondialdehyde (MDA) in urine samples. Glomerular basement membrane thickness and slit pore density were evaluated in the renal cortex tissue of rats. Furthermore, we conducted adenosine monophosphate-activated protein kinase (AMPK) signaling and oxidative stress-related nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling to investigate mechanisms of lipotoxicity in kidneys. RESULTS: Curcumin ameliorated albuminuria, pathophysiologic changes on the glomerulus, urinary MDA, and urinary SOD related with elevated Nrf2 signaling, as well as serum lipid-related index and ectopic lipid accumulation through activation of AMPK signaling. CONCLUSION: Collectively, these findings indicate that curcumin exerts renoprotective effects by inhibiting renal lipid accumulation and oxidative stress through AMPK and Nrf2 signaling pathway.
Albuminuria
;
Animals
;
Anti-Inflammatory Agents, Non-Steroidal/*therapeutic use
;
Curcumin/*pharmacology
;
Diabetes Mellitus, Type 2/*metabolism/urine
;
Diabetic Nephropathies/complications/*drug therapy/metabolism/pathology
;
Gene Expression/drug effects
;
Inflammation
;
Kidney/drug effects/metabolism/physiopathology
;
Kidney Glomerulus/metabolism/physiopathology
;
Lipid Metabolism/*drug effects
;
Male
;
Malondialdehyde/metabolism/urine
;
Oxidative Stress/*drug effects
;
Rats
;
Rats, Inbred OLETF
;
Rats, Long-Evans
;
Superoxide Dismutase/metabolism
7.Latest Advance of Study on Pathogenesis of Immune Thrombocytopenia.
Journal of Experimental Hematology 2016;24(3):958-962
Immune thrombocytopenia (ITP) is recognized as a multifactorial cell-specific autoimmune disorder, and its pathogenesis is still not very clear. Traditional concept suggests that the platelet destruction mediated by autoantibodies is the pathophysiology mechanism of ITP, while many studies in recent years have shown that the abnormities of T lymphocyte, dendritic cell (DC), natural killer cell (NK), cytokine, programmed cell death (PCD), oxidative stress (OS), infection, pregnancy and drugs etc play an important role in the pathogenesis of ITP. Since the study of ITP has made a series of important achievements in recent years, this review focuses on the latest advance of studies on pathogenesis of ITP.
Apoptosis
;
Autoantibodies
;
blood
;
Cytokines
;
blood
;
Dendritic Cells
;
pathology
;
Humans
;
Killer Cells, Natural
;
pathology
;
Oxidative Stress
;
Purpura, Thrombocytopenic, Idiopathic
;
physiopathology
;
T-Lymphocytes
;
pathology
8.Panax notoginseng saponins protect kidney from diabetes by up-regulating silent information regulator 1 and activating antioxidant proteins in rats.
Yue-Guang DU ; Li-Pei WANG ; Jun-Wen QIAN ; Ke-Na ZHANG ; Ke-Fu CHAI
Chinese journal of integrative medicine 2016;22(12):910-917
OBJECTIVETo explore the mechanism of the protective effects of Panax notoginseng saponins (PNS) on kidney in diabetic rats.
METHODSDiabetic rat model was obtained by intravenous injection of alloxan, and the rats were divided into model, PNS-100 mg/(kg day) and PNS-200 mg/(kg day) groups, 10 each. Another 10 rats injected with saline were served as control. Periodic acid-Schiff staining and immunological histological chemistry were used to observe histomorphology and tissue expression of bone morphogenetic protein-7 (BMP-7). Silent information regulator 1 (SIRT1) was silenced in rat mesangial cells by RNA interference. The mRNA expressions of SIRT-1, monocyte chemoattractant protein-1 (MCP-1), transforming growth factor β1 (TGF-β1) and plasminogen activator inhibitor-1 (PAI-1) were analyzed by reverse transcription polymerase chain reaction. The protein expressions of SIRT1 and the acetylation of nuclear factor κB (NF-κB) P65 were determined by western blotting. The concentration of MCP-1, TGF-β1 and malondialdehyde (MDA) in culture supernatant were detected by enzyme-linked immuno sorbent assay. The activity of superoxide dismutase (SOD) was detected by the classical method of nitrogen and blue four.
RESULTSIn diabetic model rats, PNS could not only reduce blood glucose and lipid (P<0.01), but also increase protein level of BMP-7 and inhibit PAI-1 expression for suppressing fibrosis of the kidney. In rat mesangial cells, PNS could up-regulate the expression of SIRT1 (P<0.01) and in turn suppress the transcription of TGF-β1 (P<0.05) and MCP-1 (P<0.05). PNS could also reverse the increased acetylation of NF-κB p65 by high glucose. In addition, redox regulation factor MDA was down-regulated (P<0.05) and SOD was up-regulated (P<0.01), which were both induced by SIRT1 up-regulation.
CONCLUSIONSPNS could protect kidney from diabetes with the possible mechanism of up-regulating SIRT1, therefore inhibiting inflammation through decreasing the induction of inflammatory cytokines and TGF-β1, as well as activating antioxidant proteins.
Acetylation ; drug effects ; Animals ; Antioxidants ; metabolism ; Blood Glucose ; metabolism ; Bone Morphogenetic Protein 7 ; metabolism ; Chemokine CCL2 ; metabolism ; Diabetes Mellitus, Experimental ; blood ; drug therapy ; genetics ; physiopathology ; Gene Knockdown Techniques ; Immunohistochemistry ; Kidney ; drug effects ; pathology ; Kidney Function Tests ; Lipids ; blood ; Male ; Malondialdehyde ; metabolism ; Mesangial Cells ; drug effects ; metabolism ; Oxidative Stress ; drug effects ; Panax notoginseng ; chemistry ; Plasminogen Activator Inhibitor 1 ; genetics ; metabolism ; Protective Agents ; pharmacology ; therapeutic use ; Rats, Sprague-Dawley ; Saponins ; pharmacology ; therapeutic use ; Sirtuin 1 ; genetics ; Superoxide Dismutase ; metabolism ; Transcription Factor RelA ; metabolism ; Transcription, Genetic ; drug effects ; Transforming Growth Factor beta1 ; metabolism ; Up-Regulation ; drug effects
9.Inflammatory cytokines and oxidative stress markers in the inhibition of osteoarthritis by curcumin.
Jun LIU ; Xiaole HE ; Ping ZHEN ; Shenghu ZHOU ; Xusheng LI
Journal of Zhejiang University. Medical sciences 2016;45(5):461-468
To observe the influence of matrix metalloproteinases-2 (MMP-2), monocyte chemoattractant protein-1 (MCP-1), CD47, L-selectin and advanced oxidation proteinproducts (AOPP) in osteoarthritis and the intervention of curcumin.A total of 20 male C57BL/6 mice (10.05-15.00 g) were randomly divided into control group, OA group, Cur25 group and Cur50 group (intraperitoneal injected 25 μmol/L or 50 μmol/L of curcumin everyday after modeling). After 4 weeks treatment, we observed the morphological changes of the gross specimen by immunohistochemical method, and observed the ultrastructure of cartilage tissue under electron microscope. The expression of MMP-2, MCP-1 and CD47 were detected by western blotting, and L-selectin and AOPP were detected by ELISA and spectrophotometer, respectively.In the cartilage tissue morphology, the chondrocytes of OA group showed obvious change, while Cur25 and Cur50 groups maintained the good cartilage cell membrane intact. Compared with control group, the expressions of MMP-2, MCP-1, L-selectin and AOPP in OA group, Cur25 group and Cur50 group were increased (all<0.05), while CD47 levels were decreased (all<0.05). Compared with OA group, the expressions of MMP-2, MCP-1, L-selectin and AOPP in Cur25 group and Cur50 group were decreased (all<0.05), while CD47 levels were increased (all<0.05), and such changes were more significant in Cur50 group (all<0.05).The MMP-2, MCP-1, CD47, L-selectin and AOPP are closely associated with the pathology course of OA. Curcumin has protection effect on cartilage, which can relieve joint cartilage degeneration, reduce cartilage inflammation and increase the metabolic activity of chondrocytes.
Advanced Oxidation Protein Products
;
metabolism
;
Animals
;
Biomarkers
;
CD47 Antigen
;
metabolism
;
Cartilage
;
chemistry
;
drug effects
;
pathology
;
Chemokine CCL2
;
metabolism
;
Chondrocytes
;
drug effects
;
pathology
;
Curcumin
;
administration & dosage
;
pharmacology
;
Cytokines
;
L-Selectin
;
metabolism
;
Male
;
Matrix Metalloproteinase 2
;
metabolism
;
Mice, Inbred C57BL
;
Osteoarthritis
;
genetics
;
pathology
;
physiopathology
;
Oxidative Stress
10.Protective effect of diosgenin on chondrocytes mediated by JAK2/STAT3 signaling pathway in mice with osteoarthritis.
Jun LIU ; Xiaole HE ; Ping ZHEN ; Shenghu ZHOU ; Xusheng LI
Journal of Zhejiang University. Medical sciences 2016;45(5):453-460
To investigate the effect of diosgenin (Dgn) on chondrocytes and its relation to JAK2/STAT3 signaling pathway in mice with osteoarthritis (OA).Fifteen male C57BL/6 mice were randomly divided into three groups:control group, OA group and OA+Dgn group. After 4 weeks of treatment, the histopathological changes of cartilage tissue were observed by toluidine blue staining under light microscopy and the ultrastructure of chondrocytes was observed under electron microscopy. The primarily cultured chondrocytes of OA mice were randomly divided into 4 groups:(1) OA group, (2) Dgn group, (3) Dgn+AG490 group, (4) AG490 group. The expression of p-JAK2, p-STAT3, Bax, succinate dehydrogenase (SDH) and cytochrome c oxidase (COX) were detected by Western blotting, and superoxide dismutase (SOD) was detected using colorimetric method.The morphological observation showed that the chondrocytes of OA group presented considerable pathological changes, while the chondrocytes in OA+Dgn group maintained intact membrane. Electron microscopy observation found obvious injury in cartilage tissues of OA group, while that in OA+Dgn group remained smooth. Compared with OA group, the expressions of p-JAK2 and p-STAT3 in chondrocytes of Dgn group were increased (all<0.05), and the expressions of Bax protein, SDH, COX and SOD were decreased (all<0.05). While compared with Dgn group, the expressions of p-JAK2, p-STAT3, SDH, COX and SOD in chondrocytes of Dgn+AG490 group were decreased (all<0.05), and the expression of Bax protein was increased (<0.05).Diosgenin can inhibit apoptosis and increase mitochondrial oxidative stress capacity of chondrocytes in mice with osteoarthritis, which is closely related to the activation of JAK2/STAT3 signaling pathway.
Animals
;
Apoptosis
;
drug effects
;
Cartilage
;
drug effects
;
pathology
;
Chondrocytes
;
chemistry
;
drug effects
;
pathology
;
Diosgenin
;
pharmacology
;
Electron Transport Complex IV
;
metabolism
;
Janus Kinase 2
;
drug effects
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Mitochondria
;
drug effects
;
genetics
;
Osteoarthritis
;
genetics
;
physiopathology
;
Oxidative Stress
;
drug effects
;
STAT3 Transcription Factor
;
drug effects
;
Signal Transduction
;
Succinate Dehydrogenase
;
metabolism
;
Superoxide Dismutase
;
metabolism
;
Tyrphostins
;
pharmacology
;
bcl-2-Associated X Protein
;
metabolism

Result Analysis
Print
Save
E-mail