1.Antidepressant mechanism of Shenling Kaixin Granules based on BDNF/TrkB/CREB pathway.
Yan XU ; Dong-Guang LIU ; Ting-Bo NING ; Jian-Guo ZHU ; Ru YAO ; Xue MENG ; Jing-Chun YAO ; Wen-Xue ZHAO
China Journal of Chinese Materia Medica 2023;48(8):2184-2192
To investigate the antidepressant mechanism of Shenling Kaixin Granules(SLKX) in treating chronic unpredictable mild stress(CUMS) model rats. Ninety male SD rats were randomly divided into control group, model group, Shugan Jieyu Capsules(110 mg·kg~(-1)) group and SLKX low-(90 mg·kg~(-1)), medium-(180 mg·kg~(-1)), and high-dose(360 mg·kg~(-1)) groups. Depression rat model was replicated by CUMS method. After treatment, the behavioral changes of rats were evaluated by sugar preference, open field, elevated cross maze and forced swimming experiments. The contents of interleukin 1 beta(IL-1β), tumor necrosis factor α(TNF-α), brain-derived neurotrophic factor(BDNF) and 5-hydroxytryptamine(5-HT) in serum were determined by enzyme linked immunosorbent assay(ELISA), and the activities of superoxide dismutase(SOD) and catalase(CAT) in hippocampal CA1 region were also detected. Pathological changes in hippocampal CA1 region were detected by hematoxylin-eosin(HE) staining, and Western blot was used to determine the expression of nerve growth factor(NGF), BDNF, phospho-tyrosine kinase receptor(p-TrkB)/TrkB, phospho-cAMP-response element binding protein(p-CREB)/CREB, nuclear factor E2 related factor 2(Nrf2), heme oxygenase 1(HO-1), B-cell lymphoma-2(Bcl-2)/Bcl-2 associated X protein(Bax) and caspase-3 in hippocampal CA1 region. RESULTS:: showed that compared with the control group, the model group had decreased sugar preference, reduced number of entries and time spent in the center of open field and shortened total distance of movement, reduced number of entries and proportion of time spent in open arm, and increased number and time of immobility in forced swimming experiment. Additionally, the serum contents of IL-1β and TNF-α and the expression of caspase-3 were higher, while the contents of BDNF and 5-HT, the activities of SOD and CAT in hippocampal CA1 region, the expressions of NGF, BDNF, p-TrkB/TrkB, p-CREB/CREB, HO-1 and Bcl-2/Bax, and the Nrf2 nuclear translocation were lower in model group than in control group. Compared with the conditions in model group, the sugar preference, the number of entries and time spent in the center of open, total distance of movement, and the number of entries and proportion of time spent in open arm in treatment groups were increased while the number and time of immobility in forced swimming experiment were decreased; the serum contents of IL-1β and TNF-α and the expression of caspase-3 were down regulated, while the contents of BDNF and 5-HT, the activities of SOD and CAT in hippocampal CA1 region, the expressions of NGF, BDNF, p-TrkB/TrkB, p-CREB/CREB, HO-1, Bcl-2/Bax, and Nrf2 nuclear translocation were enhanced. In conclusion, SLKX might regulate the Nrf2 nucleus translocation by activating BDNF/TrkB/CREB pathway, lower oxidative stress damage in hippocampus, inhibit caspase-3 activity, and reduce apoptosis of hippocampal nerve cells, thereby playing an antidepressant role.
Rats
;
Male
;
Animals
;
bcl-2-Associated X Protein/metabolism*
;
Caspase 3/metabolism*
;
Nerve Growth Factor/metabolism*
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Signal Transduction
;
Tumor Necrosis Factor-alpha/metabolism*
;
Serotonin/metabolism*
;
NF-E2-Related Factor 2/metabolism*
;
Rats, Sprague-Dawley
;
Antidepressive Agents/pharmacology*
;
Hippocampus/metabolism*
;
Superoxide Dismutase/metabolism*
;
Sugars/pharmacology*
;
Depression/genetics*
;
Stress, Psychological/metabolism*
2.Meranzin Hydrate Improves Depression-Like Behaviors and Hypomotility via Ghrelin and Neurocircuitry.
Ya-Lin LIU ; Jian-Jun XU ; Lin-Ran HAN ; Xiang-Fei LIU ; Mu-Hai LIN ; Yun WANG ; Zhe XIAO ; Yun-Ke HUANG ; Ping REN ; Xi HUANG
Chinese journal of integrative medicine 2023;29(6):490-499
OBJECTIVE:
To investigate whether meranzin hydrate (MH) can alleviate depression-like behavior and hypomotility similar to Chaihu Shugan Powder (CSP), and further explore the potential common mechanisms.
METHODS:
Totally 120 Spraque-Dawley rats were randomly divided into 5-8 groups including sham, vehicle, fluoxetine (20 mg/kg), mosapride (10 mg/kg), CSP (30 g/kg), MH (9.18 mg/kg), [D-Lys3]-GHRP-6 (Dlys, 0.5 mg/kg), and MH+Dlys groups by a random number table, 8 rats in each group. And 32 mice were randomly divided into wild-type, MH (18 mg/kg), growth hormone secretagogue receptor-knockout (GHSR-KO), and GHSR+MH groups, 8 mice in each group. The forced swimming test (FST), open field test (OFT), tail suspension test (TST), gastric emptying (GE) test, and intestinal transit (IT) test were used to assess antidepressant and prokinetic (AP) effects after drug single administration for 30 min with absorbable identification in rats and mice, respectively. The protein expression levels of brain-derived neurotrophic factor (BDNF) and phosphorylated mammalian target of rapamycin (p-mTOR) in the hippocampus of rats were evaluated by Western blot. The differences in functional brain changes were determined via 7.0 T functional magnetic resonance imaging-blood oxygen level-dependent (fMRI-BOLD).
RESULTS:
MH treatment improved depression-like behavior (FST, OFT) and hypomotility (GE, IT) in the acute forced swimming (FS) rats (all P<0.05), and the effects are similar to the parent formula CSP. The ghrelin antagonist [D-Lys3]-GHRP-6 inhibited the effect of MH on FST and GE (P<0.05). Similarly, MH treatment also alleviated depression-like behavior (FST, TST) in the wild-type mice, however, no effects were found in the GHSR KO mice. Additionally, administration of MH significantly stimulated BDNF and p-mTOR protein expressions in the hippocampus (both P<0.01), which were also prevented by [D-Lys3]-GHRP-6 (P<0.01). Besides, 3 main BOLD foci following acute FS rats implicated activity in hippocampus-thalamus-basal ganglia (HTB) circuits. The [D-Lys3]-GHRP-6 synchronously inhibited BOLD HTB foci. As expected, prokinetic mosapride only had effects on the thalamus and basal ganglia, but not on the hippocampus. Within the HTB, the hippocampus is implicated in depression and FD.
CONCLUSIONS
MH accounts for part of AP effects of parent formula CSP in acute FS rats, mainly via ghrelin-related shared regulation coupled to BOLD signals in brain areas. This novel functionally connection of HTB following acute stress, treatment, and regulation highlights anti-depression unified theory.
Rats
;
Mice
;
Animals
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Ghrelin/metabolism*
;
Antidepressive Agents/therapeutic use*
;
Hippocampus
;
Stress, Psychological
;
Mammals/metabolism*
3.The Nucleus Accumbens CRH-CRHR1 System Mediates Early-Life Stress-Induced Sleep Disturbance and Dendritic Atrophy in the Adult Mouse.
Ting WANG ; Yu-Nu MA ; Chen-Chen ZHANG ; Xiao LIU ; Ya-Xin SUN ; Hong-Li WANG ; Han WANG ; Yu-Heng ZHONG ; Yun-Ai SU ; Ji-Tao LI ; Tian-Mei SI
Neuroscience Bulletin 2023;39(1):41-56
Adverse experiences in early life have long-lasting negative impacts on behavior and the brain in adulthood, one of which is sleep disturbance. As the corticotropin-releasing hormone (CRH)-corticotropin-releasing hormone receptor 1 (CRHR1) system and nucleus accumbens (NAc) play important roles in both stress responses and sleep-wake regulation, in this study we investigated whether the NAc CRH-CRHR1 system mediates early-life stress-induced abnormalities in sleep-wake behavior in adult mice. Using the limited nesting and bedding material paradigm from postnatal days 2 to 9, we found that early-life stress disrupted sleep-wake behaviors during adulthood, including increased wakefulness and decreased non-rapid eye movement (NREM) sleep time during the dark period and increased rapid eye movement (REM) sleep time during the light period. The stress-induced sleep disturbances were accompanied by dendritic atrophy in the NAc and both were largely reversed by daily systemic administration of the CRHR1 antagonist antalarmin during stress exposure. Importantly, Crh overexpression in the NAc reproduced the effects of early-life stress on sleep-wake behavior and NAc morphology, whereas NAc Crhr1 knockdown reversed these effects (including increased wakefulness and reduced NREM sleep in the dark period and NAc dendritic atrophy). Together, our findings demonstrate the negative influence of early-life stress on sleep architecture and the structural plasticity of the NAc, and highlight the critical role of the NAc CRH-CRHR1 system in modulating these negative outcomes evoked by early-life stress.
Animals
;
Mice
;
Corticotropin-Releasing Hormone/metabolism*
;
Nucleus Accumbens/metabolism*
;
Receptors, Corticotropin-Releasing Hormone/metabolism*
;
Sleep
;
Sleep Wake Disorders
;
Stress, Psychological/complications*
4.Mechanism of Jiaotai Pills in treatment of depression based on quantitative proteomics.
Guo-Liang DAI ; Bing-Ting SUN ; Ze-Yu CHEN ; Pei-Yao CHEN ; Zhi-Tao JIANG ; Wen-Zheng JU
China Journal of Chinese Materia Medica 2023;48(23):6500-6508
This study aimed to investigate the effect of Jiaotai Pills on protein expression in the hippocampus of the rat model of chronic unpredictable mild stress(CUMS)-induced depression by quantitative proteomics and explore the anti-depression mechanism of Jiaotai Pills. The SD rats were randomized into control, model, Jiaotai Pills, and fluoxetine groups(n=8). Other groups except the control group were subjected to CUMS modeling for 4 weeks. After 4 weeks of continuous administration, the changes of behavior and pathological morphology of the hippocampal tissue were observed. Proteins were extracted from the hippocampal tissue, and bioinformatics analysis was performed for the differentially expressed proteins(DEPs) identified by quantitative proteomics. Western blot was employed to verify the key DEPs. The results showed that Jiaotai Pills significantly alleviated the depression behaviors and hippocampal histopathological changes in the rat model of CUMS-induced depression. A total of 5 412 proteins were identified in the hippocampus of rats, including 65 DEPs between the control group and the model group and 35 DEPs between the Jiaotai Pills group and the model group. There were 16 DEPs with the same trend in the Jiaotai Pills group and the control group, which were mainly involved in sphingolipid, AMPK, and dopaminergic synapse signaling pathways. The Western blot results of Ppp2r2b, Cers1, and Ndufv3 in the hippocampus were consistent with the results of proteomics. In conclusion, Jiaotai Pills may play an anti-depression role by modulating the levels of Ppp2r2b, Cers1, Ndufv3 and other proteins and regulating sphingolipid, AMPK, and dopaminergic synapse signaling pathways.
Rats
;
Animals
;
Rats, Sprague-Dawley
;
Depression/drug therapy*
;
AMP-Activated Protein Kinases/metabolism*
;
Proteomics
;
Hippocampus
;
Stress, Psychological/metabolism*
;
Sphingolipids/metabolism*
;
Disease Models, Animal
;
Drugs, Chinese Herbal
5.Effect of Rehmanniae Radix on depression-like behavior and hippocampal monoamine neurotransmitters of chronic unpredictable mild stress model rats.
Ping TIAN ; Wei ZHANG ; Kai-Yan LI ; Hong-Wei LI ; Kai MA ; De-En HAN
China Journal of Chinese Materia Medica 2022;47(17):4691-4697
To investigate the effect of Rehmanniae Radix on depression-like behavior and monoamine neurotransmitters of chronic unpredictable mild stress(CUMS) model rats. CUMS combined with isolated feeding was used to induce the depression model of rats. The depression-like behavior of rats was evaluated by sucrose preference test, open field test, and forced swim test. Hematoxylin-Eosin(HE) staining was used to investigate the pathological changes of neurons in the CA1 and CA3 area of hippocampus. Ultra performance liquid chromatography-tandem mass spectrometry(UPLC-MS) was used to detect the contents of 5-hydroxytryptamine(5-HT), 5-hydroxyindoleacetic acid(5-HIAA), dopamine(DA), 3,4-dihydroxyphenylacetic acid(DOPAC), homovanillic acid(HVA), norepinephrine(NE), and 3-methoxy-4-hydroxyphenyl glycol(MHPG) in rats. Western blot was used to detect the protein expressions of tryptophan hydroxylase 2(TPH2), serotonin transporter(SERT), and monoamine oxidase A(MAO-A) in the hippocampus of rats. Compared with the normal group, depressive-like behavior of rats was obvious in the model group. The arrangements of neurons in the CA1 and CA3 area of hippocampus were loose and disorderly. The levels of 5-HT, 5-HIAA, and 5-HT/5-HIAA in the hippocampal area were decreased(P<0.01). The protein expression of TPH2 was decreased(P<0.01), but those of SERT and MAO-A were increased(P<0.01). In the Rehmanniae Radix groups with 1.8 g·kg~(-1) and 7.2 g·kg~(-1), the depression-like behavior of CUMS rats and pathological changes of neurons in CA1, CA3 area of hippocampus were improved. The protein expression of TPH2(P<0.05, P<0.01) was increased, and those of SERT and MAO-A were down-regulated(P<0.05, P<0.01). The levels of 5-HT, 5-HIAA, and 5-HT/5-HIAA in hippocampus were increased(P<0.05, P<0.01). The changes in DA, DOPAC, HVA, DA/(DOPAC +HVA), NE, DHPG, and NE/DHPG were not statistically significant. The results suggested that Rehmanniae Radix improved depression-like behavior of CUMS rats, and the mechanism might be related to the regulation of synthesis, transportation, and metabolism of 5-HT neurotransmitter in the hippocampus.
3,4-Dihydroxyphenylacetic Acid/pharmacology*
;
Animals
;
Antidepressive Agents/therapeutic use*
;
Chromatography, Liquid
;
Depression/drug therapy*
;
Disease Models, Animal
;
Dopamine
;
Eosine Yellowish-(YS)/pharmacology*
;
Hematoxylin/pharmacology*
;
Hippocampus/metabolism*
;
Homovanillic Acid/pharmacology*
;
Hydroxyindoleacetic Acid/metabolism*
;
Methoxyhydroxyphenylglycol/pharmacology*
;
Monoamine Oxidase/metabolism*
;
Neurotransmitter Agents/metabolism*
;
Norepinephrine/pharmacology*
;
Plant Extracts
;
Rats
;
Rehmannia/chemistry*
;
Serotonin/metabolism*
;
Serotonin Plasma Membrane Transport Proteins/pharmacology*
;
Stress, Psychological/metabolism*
;
Tandem Mass Spectrometry
;
Tryptophan Hydroxylase/metabolism*
6.Homocysteine-Induced Disturbances in DNA Methylation Contribute to Development of Stress-Associated Cognitive Decline in Rats.
Shi-Da WANG ; Xue WANG ; Yun ZHAO ; Bing-Hua XUE ; Xiao-Tian WANG ; Yu-Xin CHEN ; Zi-Qian ZHANG ; Ying-Rui TIAN ; Fang XIE ; Ling-Jia QIAN
Neuroscience Bulletin 2022;38(8):887-900
Chronic stress is generally accepted as the main risk factor in the development of cognitive decline; however, the underlying mechanisms remain unclear. Previous data have demonstrated that the levels of homocysteine (Hcy) are significantly elevated in the plasma of stressed animals, which suggests that Hcy is associated with stress and cognitive decline. To test this hypothesis, we analyzed the cognitive function, plasma concentrations of Hcy, and brain-derived neurotropic factor (BDNF) levels in rats undergoing chronic unpredicted mild stress (CUMS). The results showed that decreased cognitive behavioral performance and decreased BDNF transcription and protein expression were correlated with hyperhomocysteinemia (HHcy) levels in stressed rats. Diet-induced HHcy mimicked the cognitive decline and BDNF downregulation in the same manner as CUMS, while Hcy reduction (by means of vitamin B complex supplements) alleviated the cognitive deficits and BDNF reduction in CUMS rats. Furthermore, we also found that both stress and HHcy disturbed the DNA methylation process in the brain and induced DNA hypermethylation in the BDNF promoter. In contrast, control of Hcy blocked BDNF promoter methylation and upregulated BDNF levels in the brain. These results imply the possibility of a causal role of Hcy in stress-induced cognitive decline. We also used ten-eleven translocation (TET1), an enzyme that induces DNA demethylation, to verify the involvement of Hcy and DNA methylation in the regulation of BDNF expression and the development of stress-related cognitive decline. The data showed that TET1-expressing viral injection into the hippocampus inhibited BDNF promoter methylation and significantly mitigated the cognitive decline in HHcy rats. Taken together, novel evidence from the present study suggests that Hcy is likely involved in chronic stress-induced BDNF reduction and related cognitive deficits. In addition, the negative side-effects of HHcy may be associated with Hcy-induced DNA hypermethylation in the BDNF promoter. The results also suggest the possibility of Hcy as a target for therapy and the potential value of vitamin B intake in preventing stress-induced cognitive decline.
Animals
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Cognitive Dysfunction/complications*
;
DNA Methylation
;
Homocysteine/metabolism*
;
Hyperhomocysteinemia/metabolism*
;
Rats
;
Stress, Psychological/physiopathology*
7.Effect of high-intensity interval exercise on depression-related behavior in mice.
Jia-Hui LIU ; Chao YANG ; Qiu-Xiang GU ; Hai-Ying LIANG ; Dong LIU ; Jun LIU ; Tao LIU ; Cheng-Yun CAI
Acta Physiologica Sinica 2022;74(2):165-176
This paper was aimed to clarify the effect of high-intensity interval training (HIIT) on depression. Animal running platforms were used to establish HIIT exercise models, depression models were prepared by chronic unpredictable mild stress (CUMS), and depression-related behaviors were detected by behavioral experiments. The results showed that HIIT exercise improved depression-related behavior in CUMS model mice. Western blot and ELISA results showed that in the hippocampus, medial prefrontal cortex (mPFC) and amygdala of the CUMS model mice, glucocorticoid receptor (GR) protein expression was down-regulated, and the content of tumor necrosis factor α (TNF-α) was increased, compared with those in the control group, whereas HIIT exercise could effectively reverse these changes in CUMS model mice. These results suggest that HIIT exercise can exert antidepressant effect, which brings new ideas and means for the clinical treatment of depressive diseases.
Animals
;
Antidepressive Agents/pharmacology*
;
Behavior, Animal
;
Depression/drug therapy*
;
Disease Models, Animal
;
Hippocampus/metabolism*
;
Mice
;
Stress, Psychological/drug therapy*
8.A Network Pharmacology-Based Study on Antidepressant Effect of Salicornia europaea L. Extract with Experimental Support in Chronic Unpredictable Mild Stress Model Mice.
Dan-Chen SUN ; Ran-Ran WANG ; Hao XU ; Xue-Hui ZHU ; Yan SUN ; Shi-Qing QIAO ; Wei QIAO
Chinese journal of integrative medicine 2022;28(4):339-348
OBJECTIVE:
To investigate the pharmacodynamic material basis, mechanism of actions and targeted diseases of Salicornia europaea L. (SE) based on the network pharmacology method, and to verify the antidepressant-like effect of the SE extract by pharmacological experiments.
METHODS:
Retrieval tools including Chinese medicine (CM), PubMed, PharmMapper, MAS 3.0 and Cytoscape were used to search the components of SE, predict its targets and related therapeutic diseases, and construct the "Component-Target-Pathway" network of SE for central nervous system (CNS) diseases. Further, protein-protein interaction (PPI) network, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) function annotation of depression-related targets were analyzed to predict the antidepressant mechanism of SE. Chronic unpredictable mild stress (CUMS) model was used to construct a mouse model with depression-like symptoms. And the animals were randomly divided into 6 groups (n=10) including the normal group (nonstressed mice administered with distilled water), the CUMS group (CUMS mice administered with distilled water), the venlafaxine group (CUMS mice administered with venlafaxine 9.38 mg/kg), SE high-, medium-, and low-dose groups (CUMS mice administered with SE 1.8, 1.35 and 0.9 g/kg, respectively). Then some relevant indicators were determined for experimental verification by the forced swim test (FST), the tail suspension test (TST) and open-field test (OFT). Dopamine (DA) concentration in hippocampus and cerebral cortex, IL-2 and corticosterone (CORT) levels in blood, and nuclear factor E2 related factor 2 (Nrf2), kelch-like epichlorohydrin related protein 1 (Keap1), NAD(P) H dehydrogenase [quinone] 1 (NQO1) and heme oxygenase-1 (HO-1) levels in mice were measured by enzyme linked immunosorbent assay (ELISA) and Western blot respectively to explore the possible mechanisms.
RESULTS:
The "target-disease" network diagram predicted by network pharmacology, showed that the potential target of SE involves a variety of CNS diseases, among which depression accounts for the majority. The experimental results showed that SE (1.8, 1.35 g/kg) significantly decreased the immobility period, compared with the CUMS group in FST and TST in mice after 3-week treatment, while SE exhibited no significant effect on exploratory behavior in OFT in mice. Compared with CUMS group, the SE group (0.9 g/kg) showed significant differences (P<0.05) in DA levels in the hippocampus and cerebral cortex. In addition, compared with CUMS control group, SE (1.8 g/kg) group showed a significant effect on decreasing the activities of CORT (P<0.05), and serum IL-2 level with no statistical significance. Finally, Western blot results showed that compared with the model group, Nrf2, Keap1, NQO1 and HO-1 protein expressions in SE group (1.8 g/kg) were up-regulated (all P<0.01).
CONCLUSION
The SE extract may have an antidepressant effect, which appeared to regulate Nrf2-ARE pathway and increased levels of DA and CORT in the hippocampus and cortex.
Animals
;
Antidepressive Agents/therapeutic use*
;
Behavior, Animal
;
Chenopodiaceae/metabolism*
;
Depression/drug therapy*
;
Disease Models, Animal
;
Hippocampus
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Mice
;
NF-E2-Related Factor 2/metabolism*
;
Network Pharmacology
;
Plant Extracts/therapeutic use*
;
Stress, Psychological/drug therapy*
9.Probiotics improves abnormal behavior and hippocampal injury in pregnant-stressed offspring rats.
Zhongjun HUANG ; Bin ZHANG ; Libin LIAO ; Jie CHEN ; Ruping ZHENG ; Deyang CAI ; Jufang HUANG
Journal of Central South University(Medical Sciences) 2022;47(4):443-452
OBJECTIVES:
During pregnancy, pregnant women are prone to stress reactions due to external stimuli, affecting their own health and fetal development. At present, there is no good treatment for the stress reactions from pregnant women during pregnancy. This study aims to explore the effect of probiotics on abnormal behavior and hippocampal injury in pregnant stressed offspring.
METHODS:
SD pregnant rats were divided into a control group, a stress group, and a probiotics group, with 6 rats in each group. The control group was untreated; the stress group was given restraint stress on the 15th-20th day of pregnancy; the probiotics group was given both bifidobacterium trisporus capsules and restraint stress on the 15th-20th day of pregnancy, and the offspring continued to be fed with probiotics until 60 days after birth (P60). The offspring rats completed behavioral tests such as the open field test, the elevated plus maze test, the new object recognition test, and the barnes maze test at 60-70 d postnatally. Nissl's staining was used to reflect the injury of hippocampal neurons; immunohistochemical staining was used to detect the expression of microglia marker ionized calcium binding adapter molecule 1 (IBA-1) which can reflect microglia activation; ELISA was used to detect the content of plasma TNF-α and IL-1β; Western blotting was used to detect the expression of Bax, Bcl-2, and caspase-3.
RESULTS:
The retention time of offspring rats in the stress group in the central area of the open field was significantly less than that in the control group (P<0.01), and the retention time of offspring rats in the probiotic group in the central area of the open field was significantly more than that in the stress group (P<0.05). The offspring rats in the stress group stayed in the open arm for a shorter time than the control group (P<0.05) and entered the open arm less often than the control group (P<0.01); the offspring rats in the probiotic group stayed in the open arm for a longer time than the stress group and entered the open arm more often than the stress group (both P<0.05). The discrimination ratio for new to old objects in the offspring rats of the stress group was significantly lower than that of the control group (P<0.01), and the discrimination ratio for new to old objects in the offspring rats of the probiotic group was significantly higher than that of the stress group (P<0.05). The offspring rats in the stress group made significantly more mistakes than the control group (P<0.05), and the offspring rats in the probiotic group made significantly fewer mistakes than the stress group (P<0.05). Compared with the control group, the numbers of Nissl bodies in CA1, CA3, and DG area were significantly reduced in the offspring rats of the stress group (all P<0.001), the number of activated microglia in DG area of hippocampus was significantly increased (P<0.01), the contents of TNF-α and IL-1β in peripheral blood were significantly increased (P<0.05 or P<0.01), the protein expression level of Bcl-2 was significantly down-regulated, and the protein expression levels of Bax and caspase-3 were significantly up-regulated (all P<0.001). Compared with the stress group, the numbers of Nissl bodies in CA1, CA3, and DG area were significantly increased in the probiotic group offspring rats (P<0.001, P<0.01, P<0.05), the number of activated microglia in the DG area of hippocampus was significantly reduced (P<0.05), and the TNF-α and IL-1β levels in peripheral blood were significantly decreased (both P<0.05), the protein expression level of Bcl-2 was significantly up-regulated, and the protein expression levels of Bax and caspase-3 were significantly down-regulated (all P<0.001).
CONCLUSIONS
Probiotic intervention partially ameliorated anxiety and cognitive impairment in rats offspring of pregnancy stress, and the mechanism may be related to increasing the number of neurons, inhibiting the activation of hippocampal microglia, and reducing inflammation and apoptosis.
Animals
;
Caspase 3/metabolism*
;
Female
;
Hippocampus/physiopathology*
;
Humans
;
Pregnancy
;
Probiotics/therapeutic use*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Rats
;
Stress, Psychological/therapy*
;
Tumor Necrosis Factor-alpha/metabolism*
;
bcl-2-Associated X Protein/metabolism*
10.The mechanism of enriched environment repairing the learning and memory impairment in offspring of prenatal stress by regulating the expression of activity-regulated cytoskeletal-associated and insulin-like growth factor-2 in hippocampus.
Su-Zhen GUAN ; You-Juan FU ; Feng ZHAO ; Hong-Ya LIU ; Xiao-Hui CHEN ; Fa-Qiu QI ; Zhi-Hong LIU ; Tzi Bun NG
Environmental Health and Preventive Medicine 2021;26(1):8-8
BACKGROUND:
Prenatal stress can cause neurobiological and behavioral defects in offspring; environmental factors play a crucial role in regulating the development of brain and behavioral; this study was designed to test and verify whether an enriched environment can repair learning and memory impairment in offspring rats induced by prenatal stress and to explore its mechanism involving the expression of insulin-like growth factor-2 (IGF-2) and activity-regulated cytoskeletal-associated protein (Arc) in the hippocampus of the offspring.
METHODS:
Rats were selected to establish a chronic unpredictable mild stress (CUMS) model during pregnancy. Offspring were weaned on 21st day and housed under either standard or an enriched environment. The learning and memory ability were tested using Morris water maze and Y-maze. The expression of IGF-2 and Arc mRNA and protein were respectively measured by using RT-PCR and Western blotting.
RESULTS:
There was an elevation in the plasma corticosterone level of rat model of maternal chronic stress during pregnancy. Maternal stress's offspring exposed to an enriched environment could decrease their plasma corticosterone level and improve their weight. The offspring of maternal stress during pregnancy exhibited abnormalities in Morris water maze and Y-maze, which were improved in an enriched environment. The expression of IGF-2, Arc mRNA, and protein in offspring of maternal stress during pregnancy was boosted and some relationships existed between these parameters after being exposed enriched environment.
CONCLUSIONS
The learning and memory impairment in offspring of prenatal stress can be rectified by the enriched environment, the mechanism of which is related to the decreasing plasma corticosterone and increasing hippocampal IGF-2 and Arc of offspring rats following maternal chronic stress during pregnancy.
Animals
;
Cytoskeletal Proteins/metabolism*
;
Female
;
Gene Expression Regulation
;
Hippocampus/metabolism*
;
Insulin-Like Growth Factor II/metabolism*
;
Learning
;
Learning Disabilities/psychology*
;
Male
;
Memory Disorders/psychology*
;
Nerve Tissue Proteins/metabolism*
;
Pregnancy
;
Prenatal Exposure Delayed Effects/psychology*
;
Random Allocation
;
Rats
;
Rats, Wistar
;
Social Environment
;
Stress, Psychological/genetics*

Result Analysis
Print
Save
E-mail