1.Progress of research on potato scab and its prevention and control.
Yue MA ; Xiu WANG ; Naiqin ZHONG ; Pan ZHAO ; Jiahe WU
Chinese Journal of Biotechnology 2025;41(10):3651-3666
In recent years, potato scab caused by pathogenic Streptomyces spp. has become widespread globally, with increasing damage severely compromising the commercial value and storability of tubers. The pathogens are transmitted through the soil and seeds of potato, while existing control technologies have demonstrated limited efficacy in preventing the colonization and spread of pathogens, which pose a critical bottleneck in the sustainable development of the potato industry. This study systematically examines the pathogen characteristics and pathogenic mechanisms, evaluates the impacts of soil nutrients and microbial community structure on disease severity, and analyzes limitations in current chemical control, biological control, and disease-resistant variety breeding approaches. We propose an integrated control strategy of disease-resistant varieties, phosphorus fertilizer reduction, fertilizer efficiency enhancement, and phosphorus-soluble antagonistic fungicides, aiming to provide novel research perspectives for achieving effective prevention and control of potato scab.
Solanum tuberosum/microbiology*
;
Plant Diseases/prevention & control*
;
Streptomyces/pathogenicity*
;
Disease Resistance
;
Fungicides, Industrial/pharmacology*
;
Fertilizers
;
Soil Microbiology
2.Identification of a novel strain, Streptomyces blastmyceticus JZB130180, and evaluation of its biocontrol efficacy against Monilinia fructicola.
Mi NI ; Qiong WU ; Hong-Li WANG ; Wei-Cheng LIU ; Bin HU ; Dian-Peng ZHANG ; Juan ZHAO ; De-Wen LIU ; Cai-Ge LU
Journal of Zhejiang University. Science. B 2019;20(1):84-94
Peach brown rot, caused by Monilinia fructicola, is one of the most serious peach diseases. A strain belonging to the Actinomycetales, named Streptomyces blastmyceticus JZB130180, was found to have a strong inhibitory effect on M. fructicola in confrontation culture. Following the inoculation of peaches in vitro, it was revealed that the fermentation broth of S. blastmyceticus JZB130180 had a significant inhibitory effect on disease development by M. fructicola. The fermentation broth of S. blastmyceticus JZB130180 had an EC50 (concentration for 50% of maximal effect) of 38.3 µg/mL against M. fructicola, as determined in an indoor toxicity test. Analysis of the physicochemical properties of the fermentation broth revealed that it was tolerant of acid and alkaline conditions, temperature, and ultraviolet radiation. In addition, chitinase, cellulase, and protease were also found to be secreted by the strain. The results of this study suggest that S. blastmyceticus JZB130180 may be used for the biocontrol of peach brown rot.
Ascomycota/pathogenicity*
;
Bacterial Proteins/metabolism*
;
Cell Wall/metabolism*
;
Cellulase/metabolism*
;
Chitinases/metabolism*
;
Fermentation
;
Fruit/microbiology*
;
Pest Control, Biological/methods*
;
Phylogeny
;
Plant Diseases/prevention & control*
;
Prunus persica/microbiology*
;
Siderophores/metabolism*
;
Streptomyces/physiology*

Result Analysis
Print
Save
E-mail