1.Research Progress in the Role of Tamoxifen in Nervous System and Cognitive Function.
Jin-Nong WANG ; Yi TIAN ; Qing-Yi CAO
Acta Academiae Medicinae Sinicae 2023;45(2):334-340
Neurological diseases include a variety of neurodegenerative diseases and other brain damage diseases.The treatment schemes for neurological diseases are still in research.The existing clinical and basic studies have confirmed that traditional estrogen therapy has certain protective effect on the nervous system,while it increases the risk of breast or endometrial cancer.The emergence of the selective estrogen receptor modulators (SERMs) can avoid the above mentioned problems.The available studies have confirmed the protective effect of tamoxifen as a SERM on the nervous system.This paper reviews the role and functioning mechanisms of tamoxifen in the nervous system and cognitive function,aiming to provide guidance for the future application of tamoxifen in the treatment of neurological diseases and the improvement of cognitive function.
Tamoxifen/therapeutic use*
;
Selective Estrogen Receptor Modulators/therapeutic use*
;
Cognition
;
Nervous System
2.A multi-center, double-blind, randomized, placebo- and positive-controlled phase II clinical study of benvitimod for the treatment of atopic dermatitis.
Lin CAI ; Yan ZHAO ; Min ZHENG ; Furen ZHANG ; Qing SUN ; Quanzhong LIU ; Jin HU ; Juan SHEN ; Jianzhong ZHANG
Chinese Medical Journal 2023;136(2):251-252
3.A real-world study of the effects of endocrine therapy on liver function in breast cancer.
Yue Chong LI ; Zi Xin DENG ; Ying Jiao WANG ; Tao XU ; Qiang SUN ; S J SHEN
Chinese Journal of Surgery 2023;61(2):107-113
Objective: To compare the effect of different endocrine therapy drugs on liver function in patients with early breast cancer. Methods: A retrospective cohort study was conducted to include 4 318 patients with early breast cancer who received adjuvant endocrine therapy in Department of Breast Surgery, Peking Union Medical College Hospital from January 1, 2013 to December 31, 2021. All the patients were female, aged (51.2±11.3) years (range: 20 to 87 years), including 1 182 patients in the anastrozole group, 592 patients in the letrozole group, 332 patients in the exemestane group, and 2 212 patients in the toremifene group. The mixed effect model was used to analyze and compare the liver function levels of patients at baseline, 6, 12, 18, 24, 36, 48, 60 months of medication, and 1 year after drug withdrawal among the three aromatase inhibitors (anastrozole, letrozole, exemestane) and toremifene. Results: ALT and AST of the 4 groups were significantly higher than the baseline level at 6 months (all P<0.01), and there were no significant differences in total bilirubin, direct bilirubin and AST levels among all groups one year after drug withdrawal (P: 0.538, 0.718, 0.061, respectively). There was no significant difference in the effect of all groups on AST levels (F=2.474, P=0.061), and in the effect of three aromatase inhibitors (anastrozole, letrozole, and exemestane) on ALT levels (anastrozole vs. letrozole, P=0.182; anastrozole vs. exemestane, P=0.535; letrozole vs. exemestane, P=0.862). Anastrozole and letrozole had significantly higher effects on ALT levels than toremifene (P<0.01, P=0.009). The proportion of abnormal liver function in each group increased significantly at 6 months compared with baseline, and then the proportion showed a decreasing trend over time. Conclusions: Three aromatase inhibitors (anastrozole, letrozole, and exemestane) and toremifene can significantly increase the level of ALT and AST in patients with breast cancer, and the levels can gradually recover to the baseline after 1 year of drug withdrawal. The effect of non-steroidal aromatase inhibitors (anastrozole, letrozole) on ALT levels is greater than toremifene.
Female
;
Humans
;
Anastrozole
;
Aromatase Inhibitors/therapeutic use*
;
Bilirubin
;
Breast Neoplasms/drug therapy*
;
Letrozole
;
Liver
;
Retrospective Studies
;
Toremifene
;
Young Adult
;
Adult
;
Middle Aged
;
Aged
;
Aged, 80 and over
4.The protective effects of diallyl sulfide (DAS) on genotoxicity induced by benzene.
Ting YU ; Xiang Xin LI ; Ren Qiang CHEN
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(8):568-572
Objective: To investigate the protective effect of diallyl sulfide (DAS) , against benzene-induced genetic damage in rat. Methods: In September 2018, Sixty adult male adaptive feeding 5 days, were randomly divided into six groups according to their weight. Control groups, DAS control groups, benzene model groups, benzene+low DAS groups, benzene+middle DAS groups, benzene+High DAS group, 10 in each group. Rats in the DAS and DAS control group were orally given DAS at 40, 80, 160, 160 mg/kg, blank control and benzene model groups were given corn oil in the same volume. 2 h later, the rats in the benzene model and DAS treatment groups were given gavage administration of benzene (1.3 g/kg) mixed with corn oil (50%, V/V) , blank and DAS control groups were given corn oil in the same volume. Once a day, for 4 weeks. Samples were collected for subsequent testing. Results: Compared with the blank control group, In benzene treated rat, peripheral WBC count was reduced 65.06% (P=0.003) , lymphocyte ratiowas reduced (P=0.000) , micronucleus rate was increased (P=0.000) , Mean fluorescent intensity and relative fluorescence intensity of γH2AX in BMCs were increased 32.69%、32.64% (P=0.001、0.008) , Mean fluorescent intensity and relative fluorescence intensity of γH2AX in PBLs were increased 397.70%、396.26% (P=0.000、P=0.003) respectively. Compared with the benzene model group, the WBC count increased respectively (P=0.000、0.003、0.006) and the micronucleus rate decreased (P=0.000、0.000、0.000) in the DAS groups, Mean fluorescent intensity and relative fluorescence intensity ofγH2AX in BMCs were significantly reduced in the high DAS groups (P=0.000、0.000) , Mean fluorescent intensity and relative fluorescence intensity ofγH2AX in PBLs were significantly reduced in the low, middle, high DAS groups (P=0.000、0.000) . Conclusion: DAS can effectively suppress benzene induced genotoxic damage in rats.
4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid/analogs & derivatives*
;
Allyl Compounds/pharmacology*
;
Animals
;
Benzene/toxicity*
;
Corn Oil
;
DNA Damage
;
Male
;
Rats
;
Sulfides/pharmacology*
5.Effect of polydatin on the proliferation and apoptosis of THP-1 cells and the mechanism.
Chun-Mei WANG ; Wen-Jing QI ; Yan-Jiao REN ; Guang-Yao SHENG
Chinese Journal of Contemporary Pediatrics 2022;24(7):821-825
OBJECTIVES:
To explore the effect of polydatin on the proliferation and apoptosis of acute monocytic leukemia cell line THP-1 and the possible mechanism.
METHODS:
After THP-1 cells were treated with polydatin at gradient concentrations for 24 hours and 48 hours, their proliferation was determined by CCK-8 assay, and half maximal inhibitory concentration (IC50) was calculated. Logarithmically growing THP-1 cells were divided into two groups, a polydatin treatment group (treated with IC50 of polydatin) and a blank control group (treated without polydatin solution), and incubated for 48 hours. Cell apoptosis and cell cycle were measured by flow cytometry. The expression levels of PI3K, AKT, p-AKT, mTOR, p-mTOR, p70 S6K, and p-p70 S6K proteins were measured by Western blotting.
RESULTS:
After treatment with polydatin, the proliferation of THP-1 cells was strongly inhibited, and the IC50 at 48 hours was 1 800 μmol/L. After treatment with 1 800 μmol/L polydatin solution for 48 hours, the apoptosis rate of THP-1 cells increased significantly compared with the blank control group (P<0.05). The cell cycle was arrested in the G0/G1 and S phases, with a significantly increased proportion of cells in the G0/G1 phase and a significantly decreased proportion of cells in the S phase, as compared with the blank control group (P<0.05). The expression levels of PI3K, AKT, p-AKT, mTOR, p-mTOR, p70 S6K, and p-p70 S6K proteins decreased significantly compared with the blank control group (P<0.05).
CONCLUSIONS
Polydatin can effectively inhibit the proliferation, block the cell cycle, and induce the apoptosis of THP-1 cells, which may be related to inhibition of the PI3K/AKT/mTOR signaling pathway.
Apoptosis
;
Cell Line, Tumor
;
Cell Proliferation
;
Glucosides/pharmacology*
;
Humans
;
Phosphatidylinositol 3-Kinases
;
Proto-Oncogene Proteins c-akt
;
Signal Transduction
;
Stilbenes/pharmacology*
;
THP-1 Cells
;
TOR Serine-Threonine Kinases
6.Polydatin improves intestinal barrier injury after traumatic brain injury in rats by reducing oxidative stress and inflammatory response via activating SIRT1-mediated deacetylation of SOD2 and HMGB1.
Na QIN ; Lin HUANG ; Rui DONG ; Fen LI ; Xu Heng TANG ; Zhen Hua ZENG ; Xing Min WANG ; Hong YANG
Journal of Southern Medical University 2022;42(1):93-100
OBJECTIVE:
To investigate the protective effect against intestinal mucosal injury in rats following traumatic brain injury (TBI) and explore the underlying mechanism.
METHODS:
SD rat models of TBI were established by fluid percussion injury (FPI), and the specimens were collected at 12, 24, 48, and 72 h after TBI. Another 15 rats were randomly divided into shamoperated group (n=5), TBI with saline treatment (TBI+NS) group (n=5), and TBI with PD treatment (TBI+PD) group (treated with 30 mg/kg PD after TBI; n=5). Body weight gain and fecal water content of the rats were recorded, and after the treatments, the histopathology of the jejunum was observed, and the levels of D-lactic acid (D-LAC), diamine oxidase (DAO), ZO-1, claudin-5, and reactive oxygen species (ROS) were detected. Lipid peroxide (LPO) and superoxide dismutase (SOD) 2 content, jejunal pro-inflammatory factors (IL-6, IL-1β, and TNF- α), Sirt1 activity, SOD2 and HMGB1 acetylation level were also determined after the treatments.
RESULTS:
The rats showed significantly decreased body weight and fecal water content and progressively increased serum levels of D-LAC and DAO after TBI (P < 0.05) with obvious jejunal injury, significantly decreased expression levels of ZO-1 and claudin-5, lowered SOD2 and Sirt1 activity (P < 0.05), increased expression levels of LPO, ROS, and pro-inflammatory cytokines, and enhanced SOD2 and HMGB1 acetylation levels (P < 0.05). Compared with TBI+NS group, the rats in TBI+PD group showed obvious body weight regain, increased fecal water content, reduced jejunal pathologies, decreased D-LAC and DAO levels (P < 0.05), increased ZO-1, claudin-5, SOD2 expression levels and Sirt1 activity, and significantly decreased ROS, LPO, pro-inflammatory cytokines, and acetylation levels of SOD2 and HMGB1 (P < 0.05).
CONCLUSION
PD alleviates oxidative stress and inflammatory response by activating Sirt1-mediated deacetylation of SOD2 and HMGB1 to improve intestinal mucosal injury in TBI rats.
Animals
;
Brain Injuries, Traumatic
;
Glucosides/pharmacology*
;
HMGB1 Protein/metabolism*
;
Oxidative Stress
;
Rats
;
Rats, Sprague-Dawley
;
Sirtuin 1/metabolism*
;
Stilbenes/pharmacology*
;
Superoxide Dismutase/metabolism*
7.Pterostilbene Ameliorates Renal Damage in Diabetic Rats by Suppressing Hyperglycemia with Inhibition of Inflammatory and Fibrotic Responses.
Run Rong DING ; Guo Yu HUANG ; Yu Jing ZHANG ; Hua Lei SUN ; Yi Ming LIU ; Ze XU ; Wen Jie LI ; Xing LI
Biomedical and Environmental Sciences 2021;34(12):1015-1019
8.Effect of piceatannol against malignant melanoma
Bo YU ; Wei LIU ; Min-Qi HU ; Xiu-Fa TANG ; Chun-Jie LI ; Lin QUE
West China Journal of Stomatology 2021;39(4):413-418
OBJECTIVES:
To study the antitumor effect of piceatannol (PIC) on malignant melanoma
METHODS:
B16F10 cells were cultured
RESULTS:
The cell viability of B16F10 decreased with increasing PIC concentration. The results of the Transwell assay showed that invasion ability decreased with increasing PIC concentration, and healing time was prolonged at increased PIC concentration in the wound healing assay. Western blot results showed that PIC mainly inhibited the phosphorylation of Syk and inhibited the expression of MMP-2, MMP-9, and VEGF. RNA interference pointed out that blocking the expression of Syk can reveal the same inhibition effect on B16F10 cells as PIC.
CONCLUSIONS
PIC might block the progression of malignant melanoma by inhibiting spleen tyrosine kinase.
Animals
;
Cell Line, Tumor
;
Cell Movement
;
Matrix Metalloproteinase 2
;
Matrix Metalloproteinase 9
;
Melanoma/drug therapy*
;
Mice
;
Neoplasm Invasiveness
;
Stilbenes/pharmacology*
;
Syk Kinase
;
Vascular Endothelial Growth Factor A
9.Heterologous expression of a novel β-glucosidase BglD2 and its application in polydatin-hydrolyzing.
Cheng HE ; Yan WU ; Chunyu MENG ; Yazhong XIAO ; Zemin FANG ; Wei FANG
Chinese Journal of Biotechnology 2021;37(2):580-592
A novel β-glucosidase BglD2 with glucose and ethanol tolerant properties was screened and cloned from the deep-sea bacterium Bacillus sp. D1. The application potential of BglD2 toward polydatin-hydrolyzing was also evaluated. BglD2 exhibited the maximal β-glucosidase activity at 45 °C and pH 6.5. BglD2 maintained approximately 50% of its origin activity after incubation at 30 °C and pH 6.5 for 20 h. BglD2 could hydrolyze a variety of substrates containing β (1→3), β (1→4), and β (1→6) bonds. The activity of β-glucosidase was enhanced to 2.0 fold and 2.3 fold by 100 mmol/L glucose and 150 mmol/L xylose, respectively. BglD2 possessed ethanol-stimulated and -tolerant properties. At 30 °C, the activity of BglD2 enhanced to 1.2 fold in the presence of 10% ethanol and even remained 60% in 25% ethanol. BglD2 could hydrolyze polydatin to produce resveratrol. At 35 °C, BglD2 hydrolyzed 86% polydatin after incubation for 2 h. Thus, BglD2 possessed glucose and ethanol tolerant properties and can be used as the potential candidate of catalyst for the production of resveratrol from polydatin.
Enzyme Stability
;
Glucose
;
Glucosides/pharmacology*
;
Hydrogen-Ion Concentration
;
Stilbenes/pharmacology*
;
Substrate Specificity
;
Temperature
;
Xylose
;
beta-Glucosidase/genetics*
10.Pterostilbene Ameliorates Glycemic Control, Dyslipidemia and Liver Injury in Type 2 Diabetes Rats.
Yu Jing ZHANG ; Hua Lei SUN ; Teng WANG ; Xin Xin LIU ; Chang LIU ; Fang SHEN ; Bing Ya WANG ; Run Rong DING ; Yi Ming LIU ; Guo Yu HUANG ; Wen Jie LI ; Xing LI
Biomedical and Environmental Sciences 2020;33(5):365-368
Animals
;
Chemical and Drug Induced Liver Injury
;
drug therapy
;
Diabetes Mellitus, Experimental
;
drug therapy
;
Diabetes Mellitus, Type 2
;
drug therapy
;
Dyslipidemias
;
drug therapy
;
Glycemic Load
;
drug effects
;
Male
;
Protective Agents
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Specific Pathogen-Free Organisms
;
Stilbenes
;
pharmacology

Result Analysis
Print
Save
E-mail