1.Cardiomyocyte pyroptosis inhibited by dental pulp-derived mesenchymal stem cells via the miR-19a-3p/IRF-8/MAPK pathway in ischemia-reperfusion.
Yi LI ; Xiang WANG ; Sixian WENG ; Chenxi XIA ; Xuyang MENG ; Chenguang YANG ; Ying GUO ; Zuowei PEI ; Haiyang GAO ; Fang WANG
Chinese Medical Journal 2025;138(18):2336-2346
BACKGROUND:
The protective effect of mesenchymal stem cells (MSCs) on cardiac ischemia-reperfusion (I/R) injury has been widely reported. Dental pulp-derived mesenchymal stem cells (DP-MSCs) have therapeutic effects on various diseases, including diabetes and cirrhosis. This study aimed to determine the therapeutic effects of DP-MSCs on I/R injury and elucidate the underlying mechanism.
METHODS:
Myocardial I/R injury model mice were treated with DP-MSCs or a miR-19a-3p mimic. The infarct volume, fibrotic area, pyroptosis, inflammation level, and cardiac function were measured. Cardiomyocytes exposed to hypoxia-reoxygenation were transfected with the miR-19a-3p mimic, miR-19a-3p inhibitor, or negative control. Pyroptosis and protein expression in the interferon regulatory factor 8/mitogen-activated protein kinase (IRF-8/MAPK) pathway were measured.
RESULTS:
DP-MSCs protected cardiac function in cardiac I/R-injured mice and inhibited cardiomyocyte pyroptosis. The upregulation of miR-19a-3p protected cardiac function, inhibited cardiomyocyte pyroptosis, and inhibited IRF-8/MAPK signaling in cardiac I/R-injured mice. DP-MSCs inhibited cardiomyocyte pyroptosis and the IRF-8/MAPK signaling by upregulating the miR-19a-3p levels in cardiomyocytes injured by I/R.
CONCLUSION
DP-MSCs protected cardiac function by inhibiting cardiomyocyte pyroptosis through miR-19a-3p under I/R conditions.
Animals
;
MicroRNAs/metabolism*
;
Pyroptosis/genetics*
;
Mesenchymal Stem Cells/metabolism*
;
Myocytes, Cardiac/cytology*
;
Mice
;
Male
;
Mice, Inbred C57BL
;
Dental Pulp/cytology*
;
Myocardial Reperfusion Injury/therapy*
;
MAP Kinase Signaling System/physiology*
2.Research progress on the effect of miRNA-mediated PPARγ-related signaling pathways on lipid metabolism in steroid-induced osteonecrosis of femoral head.
Hai-Yuan GAO ; Xiao-Ping WANG ; Ming-Wang ZHOU ; Xing YANG ; Bang-Jing HE
Acta Physiologica Sinica 2025;77(3):493-503
Steroid-induced osteonecrosis of femoral head (SONFH) is a disease characterized by femoral head collapse and local pain caused by excessive use of glucocorticoids. Peroxisome proliferator-activated receptor-γ (PPARγ) is mainly expressed in adipose tissue. Wnt/β-catenin, AMPK and other related signaling pathways play an important role in regulating adipocyte differentiation, fatty acid uptake and storage. Bone marrow mesenchymal cells (BMSCs) have the ability to differentiate into adipocytes or osteoblasts, and the use of hormones upregulates PPARγ expression, resulting in BMSCs biased towards adipogenic differentiation. The increase of adipocytes affects the blood supply and metabolism of the femoral head, and the decrease of osteoblasts leads to the loss of trabecular bone, which eventually leads to partial or total ischemic necrosis and collapse of the femoral head. MicroRNAs (miRNAs) are a class of short non-coding RNAs that regulate gene expression by inhibiting the transcription or translation of target genes, thereby affecting cell function and disease progression. Studies have shown that miRNAs affect the progression of SONFH by regulating PPARγ lipid metabolism-related signaling pathways. Therefore, it may be an accurate and feasible SONFH treatment strategy to regulate adipogenic-osteoblast differentiation in BMSCs by targeted intervention of miRNA differential expression to improve lipid metabolism. In this paper, the miRNA-mediated PPARγ-related signaling pathways were classified and summarized to clarify their effects on lipid metabolism in SONFH, providing a theoretical reference for miRNA targeted therapy of SONFH, and then providing scientific evidence for SONFH precision medicine.
MicroRNAs/physiology*
;
PPAR gamma/metabolism*
;
Femur Head Necrosis/metabolism*
;
Humans
;
Signal Transduction/physiology*
;
Lipid Metabolism/physiology*
;
Animals
;
Cell Differentiation
;
Mesenchymal Stem Cells/cytology*
;
Glucocorticoids/adverse effects*
3.Gene regulation and signaling transduction in mediating the self-renewal, differentiation, and apoptosis of spermatogonial stem cells.
Cai-Mei HE ; Dong ZHANG ; Zuping HE
Asian Journal of Andrology 2025;27(1):4-12
Infertility has become one of the most serious diseases worldwide, and 50% of this disease can be attributed to male-related factors. Spermatogenesis, by definition, is a complex process by which spermatogonial stem cells (SSCs) self-renew to maintain stem cell population within the testes and differentiate into mature spermatids. It is of great significance to uncover gene regulation and signaling pathways that are involved in the fate determinations of SSCs with aims to better understand molecular mechanisms underlying human spermatogenesis and identify novel targets for gene therapy of male infertility. Significant achievement has recently been made in demonstrating the signaling molecules and pathways mediating the fate decisions of mammalian SSCs. In this review, we address key gene regulation and crucial signaling transduction pathways in controlling the self-renewal, differentiation, and apoptosis of SSCs, and we illustrate the networks of genes and signaling pathways in SSC fate determinations. We also highlight perspectives and future directions in SSC regulation by genes and their signaling pathways. This review could provide novel insights into the genetic regulation of normal and abnormal spermatogenesis and offer molecular targets to develop new approaches for gene therapy of male infertility.
Humans
;
Male
;
Signal Transduction/physiology*
;
Apoptosis/physiology*
;
Spermatogenesis/physiology*
;
Cell Differentiation
;
Adult Germline Stem Cells/physiology*
;
Spermatogonia/cytology*
;
Gene Expression Regulation
;
Animals
;
Infertility, Male/genetics*
;
Cell Self Renewal/genetics*
4.Exosomes derived from mesenchymal stem cells alleviate white matter damage in neonatal rats by targeting the NLRP3 inflammasome.
Chao WANG ; Yan-Ping ZHU ; BAYIERCAICIKE ; Yu-Qing FENG ; Yan-Mei WANG
Chinese Journal of Contemporary Pediatrics 2025;27(9):1119-1127
OBJECTIVES:
To investigate whether mesenchymal stem cell-derived exosomes (MSC-Exo) alleviate white matter damage (WMD) in neonatal rats by targeting the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3).
METHODS:
Three-day-old Sprague-Dawley rats were randomly assigned to four groups: Sham, hypoxia-ischemia (HI), MSC-Exo, and MCC950 (NLRP3 inhibitor) (n=24 per group). The WMD model was established by unilateral common carotid artery ligation combined with hypoxia. Exosomes (1×108 particles/μL) were transplanted into the lateral ventricle using stereotaxic guidance. Fourteen days after modeling, hematoxylin-eosin staining was used to observe pathological changes in brain tissue, and transmission electron microscopy was used to assess myelinated axons. Western blotting was performed to detect the expression of myelin basic protein (MBP), NLRP3, caspase-1, and interleukin-1β (IL-1β). Immunohistochemistry was used to measure NLRP3, caspase-1, and IL-1β expression. Twenty-eight days post-modeling, behavioral changes were evaluated using the Morris water maze.
RESULTS:
In the HI group, marked inflammatory cell infiltration, extensive vacuolation, and decreased numbers of myelinated axons were observed compared to the Sham group. The MSC-Exo group showed reduced inflammatory infiltration, fewer vacuoles, and increased myelinated axons compared to the HI group, while the MCC950 group showed nearly normal cell morphology. Compared to the Sham group, the HI group exhibited decreased MBP expression, fewer platform crossings, shorter time in the target quadrant, increased expression of NLRP3, caspase-1, and IL-1β, and longer escape latency (all P<0.05). Compared to the HI group, the MSC-Exo and MCC950 groups showed increased MBP expression, more platform crossings, longer target quadrant stay, and reduced NLRP3, caspase-1, and IL-1β expression, as well as shorter escape latency (all P<0.05).
CONCLUSIONS
MSC-Exo may attenuate white matter damage in neonatal rats by targeting the NLRP3 inflammasome and promoting oligodendrocyte maturation.
Animals
;
NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors*
;
Rats, Sprague-Dawley
;
White Matter/pathology*
;
Inflammasomes/physiology*
;
Rats
;
Animals, Newborn
;
Mesenchymal Stem Cells
;
Interleukin-1beta/analysis*
;
Male
;
Caspase 1/analysis*
;
Hypoxia-Ischemia, Brain/therapy*
;
Myelin Basic Protein/analysis*
5.Human umbilical cord mesenchymal stem cells protect against neonatal white matter injury by activating the Nrf2/Keap1/HO-1 signaling pathway.
Chao WANG ; Meng-Xin WANG ; Yan-Ping ZHU
Chinese Journal of Contemporary Pediatrics 2025;27(11):1398-1407
OBJECTIVES:
To investigate whether human umbilical cord mesenchymal stem cells (HUC-MSCs) play protective effects against white matter injury (WMI) in neonatal rats via activation of the nuclear factor-erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1)/heme oxygenase-1 (HO-1) signaling pathway.
METHODS:
A neonatal WMI model was established in 3-day-old Sprague-Dawley rats by unilateral common carotid artery ligation combined with hypoxia. The study comprised two parts. (1) Rats were randomized into sham, hypoxia-ischemia (HI), and HUC-MSC groups (n=36 per group); brain tissues were collected at 7, 14, and 21 days after modeling. (2) Rats were randomized into sham, HI, HUC-MSC, and HUC-MSC+ML385 (Nrf2 inhibitor) groups (n=12 per group); tissues were collected 14 days after modeling. Hematoxylin-eosin staining assessed histopathology, and Luxol fast blue staining evaluated myelination. Immunohistochemistry examined the localization and expression of Nrf2, myelin basic protein (MBP), and proteolipid protein (PLP). Immunofluorescence assessed synaptophysin (SYP) and postsynaptic density-95 (PSD-95). Western blotting quantified Nrf2, Keap1, HO-1, SYP, PSD-95, MBP, and PLP. Spatial learning and memory were evaluated by the Morris water maze.
RESULTS:
At 7, 14, and 21 days after modeling, the sham group showed intact white matter, whereas the HI group exhibited white matter disruption, cellular vacuolation, and disorganized nerve fibers. These pathological changes were attenuated in the HUC-MSC group. Compared with the HI group, the HUC-MSC group showed increased Nrf2 immunopositivity and protein levels, increased HO-1 protein levels, and decreased Keap1 protein levels (P<0.05). Compared with the HI group, the HUC-MSC group had higher SYP and PSD-95 immunofluorescence intensities and protein levels, higher MBP and PLP positivity and protein levels, increased mean optical density of myelin, more platform crossings, and longer time in the target quadrant (all P<0.05). These improvements were reduced in the HUC-MSC+ML385 group compared with the HUC-MSC group (P<0.05).
CONCLUSIONS
HUC-MSCs may promote oligodendrocyte maturation and synaptogenesis after neonatal WMI by activating the Nrf2/Keap1/HO-1 pathway, thereby improving spatial cognitive function.
NF-E2-Related Factor 2/physiology*
;
Animals
;
Rats, Sprague-Dawley
;
Signal Transduction/physiology*
;
Humans
;
Rats
;
White Matter/pathology*
;
Kelch-Like ECH-Associated Protein 1/physiology*
;
Umbilical Cord/cytology*
;
Heme Oxygenase-1/physiology*
;
Animals, Newborn
;
Male
;
Mesenchymal Stem Cell Transplantation
;
Heme Oxygenase (Decyclizing)/physiology*
;
Mesenchymal Stem Cells/physiology*
;
Female
;
Hypoxia-Ischemia, Brain
6.A Study of Flow Sorting Lymphocyte Subsets to Detect Epstein-Barr Virus Reactivation in Patients with Hematological Malignancies.
Hui-Ying LI ; Shen-Hao LIU ; Fang-Tong LIU ; Kai-Wen TAN ; Zi-Hao WANG ; Han-Yu CAO ; Si-Man HUANG ; Chao-Ling WAN ; Hai-Ping DAI ; Sheng-Li XUE ; Lian BAI
Journal of Experimental Hematology 2025;33(5):1468-1475
OBJECTIVE:
To analyze the Epstein-Barr virus (EBV) load in different lymphocyte subsets, as well as clinical characteristics and outcomes in patients with hematologic malignancies experiencing EBV reactivation.
METHODS:
Peripheral blood samples from patients were collected. B, T, and NK cells were isolated sorting with magnetic beads by flow cytometry. The EBV load in each subset was quantitated by real-time quantitative polymerase chain reaction (RT-qPCR). Clinical data were colleted from electronic medical records. Survival status was followed up through outpatient visits and telephone calls. Statistical analyses were performed using SPSS 25.0.
RESULTS:
A total of 39 patients with hematologic malignancies were included, among whom 35 patients had undergone allogeneic hematopoietic stem cell transplantation (allo-HSCT). The median time to EBV reactivation was 4.8 months (range: 1.7-57.1 months) after allo-HSCT. EBV was detected in B, T, and NK cells in 20 patients, in B and T cells in 11 patients, and only in B cells in 4 patients. In the 35 patients, the median EBV load in B cells was 2.19×104 copies/ml, significantly higher than that in T cells (4.00×103 copies/ml, P <0.01) and NK cells (2.85×102 copies/ml, P <0.01). Rituximab (RTX) was administered for 32 patients, resulting in EBV negativity in 32 patients with a median time of 8 days (range: 2-39 days). Post-treatment analysis of 13 patients showed EBV were all negative in B, T, and NK cells. In the four non-transplant patients, the median time to EBV reactivation was 35 days (range: 1-328 days) after diagnosis of the primary disease. EBV was detected in one or two subsets of B, T, or NK cells, but not simultaneously in all three subsets. These patients received a combination chemotherapy targeting at the primary disease, with 3 patients achieving EBV negativity, and the median time to be negative was 40 days (range: 13-75 days).
CONCLUSION
In hematologic malignancy patients after allo-HSCT, EBV reactivation commonly involves B, T, and NK cells, with a significantly higher viral load in B cells compared to T and NK cells. Rituximab is effective for EBV clearance. In non-transplant patients, EBV reactivation is restricted to one or two lymphocyte subsets, and clearance is slower, highlighting the need for prompt anti-tumor therapy.
Humans
;
Hematologic Neoplasms/virology*
;
Herpesvirus 4, Human/physiology*
;
Epstein-Barr Virus Infections
;
Hematopoietic Stem Cell Transplantation
;
Virus Activation
;
Lymphocyte Subsets/virology*
;
Flow Cytometry
;
Killer Cells, Natural/virology*
;
Male
;
Female
;
B-Lymphocytes/virology*
;
Viral Load
;
Adult
;
T-Lymphocytes/virology*
;
Middle Aged
7.Beneficial influence of low-density lipoprotein cholesterol on the endothelium in relation to endothelial repair.
Yuji SHIMIZU ; Shin-Ya KAWASHIRI ; Hirotomo YAMANASHI ; Seiko NAKAMICHI ; Naomi HAYASHIDA ; Yasuhiro NAGATA ; Takahiro MAEDA
Environmental Health and Preventive Medicine 2025;30():24-24
BACKGROUND:
Low-density lipoprotein cholesterol (LDLc) is regarded as a risk factor for endothelial dysfunction. However, LDLc stimulates the proliferation of hematopoietic stem cells (CD34-positive cells), which contribute to endothelial repair. Therefore, LDLc may have a beneficial influence on the endothelium of individuals with lower endothelial repair activity.
METHODS:
This cross-sectional study included 245 men aged 60-69 years. Endothelial repair activity was categorized by the circulating levels of CD34-positive cells based on median values. The status of endothelium was evaluated using the cardio-ankle vascular index (CAVI).
RESULTS:
Among individuals with low levels of circulating CD34-positive cells, LDL-c levels were significantly inversely correlated with CAVI and positively correlated with circulating CD34-positive cells. No significant correlations were observed among the participants with high levels of circulating CD34-positive cells. Among low levels of CD34-positive cells, the adjusted standardized parameter (β) and p value were -0.24 (p = 0.021) for CAVI and 0.41 (p < 0.001) for CD34-positive cells, whereas among high levels of CD34-positive cells, the corresponding values were 0.03 (p = 0.738) and -0.09 (p = 0.355).
CONCLUSION
LDLc has a beneficial influence on endothelial health among individuals with low endothelial repair activity, possibly by stimulating the proliferation of hematopoietic stem cells.
Humans
;
Middle Aged
;
Male
;
Aged
;
Cross-Sectional Studies
;
Cholesterol, LDL/blood*
;
Endothelium, Vascular/physiology*
;
Antigens, CD34/blood*
;
Hematopoietic Stem Cells
8.Establishment and application of key technologies for periodontal tissue regeneration based on microenvironment and stem cell regulation.
Baojin MA ; Jianhua LI ; Yuanhua SANG ; Yang YU ; Jichuan QIU ; Jinlong SHAO ; Kai LI ; Shiyue LIU ; Mi DU ; Lingling SHANG ; Shaohua GE
Journal of Peking University(Health Sciences) 2025;57(5):841-846
The prevalence of periodontitis in China is as high as 74.2%, making it the leading cause of tooth loss in adults and severely impacting both oral and overall health. The treatment of periodontitis and periodontal tissue regeneration are global challenges of significant concern. GE Shaohua' s group at School and Hospital of Stomatology, Shandong University has focused on the key scientific issue of "remodeling the periodontal inflammatory microenvironment and optimizing tissue repair and regeneration". They have elucidated the mechanisms underlying the persistence of periodontitis, developed bioactive materials to enhance stem cell regenerative properties, and constructed a series of guided tissue regeneration barrier membranes to promote periodontal tissue repair, leading to the establishment of a comprehensive technology system for the treatment of periodontitis. Specific achievements and progress include: (1) Elucidating the mechanism by which key periodontal pathogens evade antimicrobial autophagy, leading to inflammatory damage; developing intelligent antimicrobial hydrogels and nanosystems, and creating metal-polyphenol network microsphere capsules to reshape the periodontal inflammatory microenvironment; (2) Explaining the mechanisms by which nanomaterial structures and electroactive interfaces regulate stem cell behavior, developing optimized nanostructures and electroactive biomaterials, thereby effectively enhancing the regenerative repair capabilities of stem cells; (3) Creating a series of biphasic heterogeneous barrier membranes, refining guided tissue regeneration and in situ tissue engineering techniques, stimulating the body' s intrinsic repair potential, and synergistically promoting the structural regeneration and functional reconstruction of periodontal tissues. The research outcomes of the group have innovated the fundamental theories of periodontal tissue regeneration, broken through foreign technological barriers and patent blockades, established a cascade repair strategy for periodontal regeneration, and enhanced China' s core competitiveness in the field of periodontal tissue regeneration.
Humans
;
Stem Cells/physiology*
;
Periodontitis/therapy*
;
Guided Tissue Regeneration, Periodontal/methods*
;
Regeneration
;
Biocompatible Materials
;
Tissue Engineering/methods*
9.Roles of lncRNA in the crosstalk between osteogenesis and angiogenesis in the bone microenvironment.
Shihua ZHANG ; Jianmin GUO ; Yuting HE ; Zhi'ang SU ; Yao FENG ; Lan ZHANG ; Zou JUN ; Xiquan WENG ; Yu YUAN
Journal of Zhejiang University. Science. B 2025;26(2):107-123
Bone is a highly calcified and vascularized tissue. The vascular system plays a vital role in supporting bone growth and repair, such as the provision of nutrients, growth factors, and metabolic waste transfer. Moreover, the additional functions of the bone vasculature, such as the secretion of various factors and the regulation of bone-related signaling pathways, are essential for maintaining bone health. In the bone microenvironment, bone tissue cells play a critical role in regulating angiogenesis, including osteoblasts, bone marrow mesenchymal stem cells (BMSCs), and osteoclasts. Osteogenesis and bone angiogenesis are closely linked. The decrease in osteogenesis and bone angiogenesis caused by aging leads to osteoporosis. Long noncoding RNAs (lncRNAs) are involved in various physiological processes, including osteogenesis and angiogenesis. Recent studies have shown that lncRNAs could mediate the crosstalk between angiogenesis and osteogenesis. However, the mechanism by which lncRNAs regulate angiogenesis‒osteogenesis crosstalk remains unclear. In this review, we describe in detail the ways in which lncRNAs regulate the crosstalk between osteogenesis and angiogenesis to promote bone health, aiming to provide new directions for the study of the mechanism by which lncRNAs regulate bone metabolism.
RNA, Long Noncoding/physiology*
;
Osteogenesis/physiology*
;
Humans
;
Neovascularization, Physiologic/genetics*
;
Bone and Bones/metabolism*
;
Animals
;
Mesenchymal Stem Cells
;
Signal Transduction
;
Osteoblasts
;
Osteoclasts
;
Angiogenesis
10.Pig meniscus single-cell sequencing reveals highly active red zone chondrocyte populations involved in stemness maintenance and vascularization development.
Monika MANKOWSKA ; Monika STEFANSKA ; Anna Maria MLECZKO ; Katarzyna SARAD ; Witold KOT ; Lukasz KRYCH ; Julia Anna SEMBA ; Eric Lars-Helge LINDBERG ; Jakub Dalibor RYBKA
Journal of Zhejiang University. Science. B 2025;26(7):675-693
Meniscus injuries are widespread and the available treatments do not offer enough healing potential. Here, we provide critical support for using pigs as a biological model for meniscal degeneration and the development of cutting-edge therapies in orthopedics. We present a single-cell transcriptome atlas of the meniscus, consisting of cell clusters corresponding to four major cell types: chondrocytes, endothelial cells, smooth muscle cells, and immune cells. Five distinct chondrocyte subclusters (CH0‒CH4) were annotated, of which only one was widespread in both the red and white zones, indicating a major difference in the cellular makeup of the zones. Subclusters distinct to the white zone appear responsible for cartilage-specific matrix deposition and protection against adverse microenvironmental factors, while those in the red zone exhibit characteristics of mesenchymal stem cells and are more likely to proliferate and migrate. Additionally, they induce remodeling actions in other chondrocyte subclusters and promote the proliferation and maturation of endothelial cells, inducing healing and vascularization processes. Considering that they have substantial remodeling capabilities, these subclusters should be of great interest for tissue engineering studies. We also show that the cellular makeup of the pig meniscus is comparable to that of humans, which supports the use of pigs as a model in orthopedic therapy development.
Animals
;
Swine
;
Chondrocytes/physiology*
;
Single-Cell Analysis
;
Meniscus/blood supply*
;
Endothelial Cells/cytology*
;
Transcriptome
;
Mesenchymal Stem Cells/cytology*
;
Neovascularization, Physiologic
;
Cell Proliferation

Result Analysis
Print
Save
E-mail