1.Involvement of interferon γ-producing mast cells in immune responses against melanocytes in vitiligo requires Mas-related G protein-coupled receptor X2 activation.
Zhikai LIAO ; Yunzhu YAO ; Bingqi DONG ; Yue LE ; Longfei LUO ; Fang MIAO ; Shan JIANG ; Tiechi LEI
Chinese Medical Journal 2025;138(11):1367-1378
BACKGROUND:
Increasing evidence indicates that oxidative stress and interferon γ (IFNγ)-driven cellular immune responses are responsible for the pathogenesis of vitiligo. However, the connection between oxidative stress and the local production of IFNγ in early vitiligo remains unexplored. The aim of this study was to identify the mechanism underlying the production of IFNγ by mast cells and its impact on vitiligo pathogenesis.
METHODS:
Skin specimens from the central, marginal, and perilesional skin areas of active vitiligo lesions were collected to characterize changes of mast cells, CD8 + T cells, and IFNγ-producing cells. Cell supernatants from hydrogen peroxide (H 2 O 2 )-treated keratinocytes (KCs) were harvested to measure levels of soluble stem cell factor (sSCF) and matrix metalloproteinase (MMP)-9. A murine vitiligo model was established using Mas-related G protein-coupled receptor-B2 (MrgB2, mouse ortholog of human MrgX2) conditional knockout (MrgB2 -/- ) mice to investigate IFNγ production and inflammatory cell infiltrations in tail skin following the challenge with tyrosinase-related protein (Tyrp)-2 180 peptide. Potential interactions between the Tyrp-2 180 peptide and MrgX2 were predicted using molecular docking. The siRNAs targeting MrgX2 and the calcineurin inhibitor FK506 were also used to examine the signaling pathways involved in mast cell activation.
RESULTS:
IFNγ-producing mast cells were closely aligned with the recruitment of CD8 + T cells in the early phase of vitiligo skin. sSCF released by KCs through stress-enhanced MMP9-dependent proteolytic cleavage recruited mast cells into sites of inflamed skin (Perilesion vs . lesion, 13.00 ± 4.00/high-power fields [HPF] vs . 26.60 ± 5.72/HPF, P <0.05). Moreover, IFNγ-producing mast cells were also observed in mouse tail skin following challenge with Tyrp-2 180 (0 h vs . 48 h post-recall, 0/HPF vs . 3.80 ± 1.92/HPF, P <0.05). The IFNγ + mast cell and CD8 + T cell counts were lower in the skin of MrgB2 -/- mice than in those of wild-type mice (WT vs . KO 48 h post-recall, 4.20 ± 0.84/HPF vs . 0.80 ± 0.84/HPF, P <0.05).
CONCLUSION
Mast cells activated by MrgX2 serve as a local IFNγ producer that bridges between innate and adaptive immune responses against MCs in early vitiligo. Targeting MrgX2-mediated mast cell activation may represent a new strategy for treating vitiligo.
Vitiligo/metabolism*
;
Mast Cells/immunology*
;
Animals
;
Interferon-gamma/metabolism*
;
Mice
;
Humans
;
Melanocytes/metabolism*
;
Receptors, G-Protein-Coupled/genetics*
;
Mice, Knockout
;
Mice, Inbred C57BL
;
Male
;
Female
;
Matrix Metalloproteinase 9/metabolism*
;
Stem Cell Factor/metabolism*
2.Preparation of calcium phosphate nanoflowers and evaluation of their antioxidant and osteogenic induction capabilities in vitro.
Mingyu JIA ; Zhihong CHEN ; Huajian ZHOU ; Yukang ZHANG ; Min WU
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(9):1203-1211
OBJECTIVE:
To investigate the antioxidant and osteogenic induction capabilities of calcium phosphate nanoflowers (hereinafter referred to as nanoflowers) in vitro at different concentrations.
METHODS:
Nanoflowers were prepared using gelatin, tripolyphosphate, and calcium chloride. Their morphology, microstructure, elemental composition and distribution, diameter, and molecular constitution were characterized using scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and energy-dispersive spectroscopy. Femurs and tibias were harvested from twelve 4-week-old Sprague Dawley rats, and bone marrow mesenchymal stem cells (BMSCs) were isolated and cultured using the whole bone marrow adherent method, followed by passaging. The third passage cells were identified as stem cells by flow cytometry and then co-cultured with nanoflowers at concentrations of 0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, and 3.6 mg/mL. Cell counting kit 8 (CCK-8) assay was performed to screen for the optimal concentration that demonstrated the best cell viability, which was subsequently used as the experimental concentration for further studies. After co-culturing BMSCs with the screened concentration of nanoflowers, the biocompatibility of the nanoflowers was verified through live/dead cell staining, scratch assay, and cytoskeleton staining. The antioxidant capacity was assessed by using reactive oxygen species (ROS) fluorescence staining. The in vitro osteoinductive ability was evaluated via alkaline phosphatase (ALP) staining, alizarin red staining, and immunofluorescence staining of osteocalcin (OCN) and Runt-related transcription factor 2 (RUNX2). All the above indicators were compared with the control group of normally cultured BMSCs without the addition of nanoflowers.
RESULTS:
Scanning electron microscopy revealed that the prepared nanoflowers exhibited a flower-like structure; transmission electron microscopy scans discovered that the nanoflowers possessed a multi-layered structure, and high-magnification images displayed continuous atomic arrangements, with the nanoflower diameter measuring (2.00±0.25) μm; energy-dispersive spectroscopy indicated that the nanoflowers contained elements such as C, N, O, P, and Ca, which were uniformly distributed across the flower region; Fourier transform infrared spectroscopy analyzed the absorption peaks of each component, demonstrating the successful preparation of the nanoflowers. Through CCK-8 screening, the concentrations of 0.8, 1.2, and 1.6 mg/mL were selected for subsequent experiments. The live/dead cell staining showed that nanoflowers at different concentrations exhibited good cell compatibility, with the 1.2 mg/mL concentration being the best (P<0.05). The scratch assay results indicated that the cell migration ability in the 1.2 mg/mL group was superior to the other groups (P<0.05). The cytoskeleton staining revealed that the cell morphology was well-extended in all concentration groups, with no significant difference compared to the control group. The ROS fluorescence staining demonstrated that the ROS fluorescence in all concentration groups decreased compared to the control group after lipopolysaccharide induction (P<0.05), with the 1.2 mg/mL group showing the weakest fluorescence. The ALP staining showed blue-purple nodular deposits around the cells in all groups, with the 1.2 mg/mL group being significantly more prominent. The alizarin red staining displayed orange-red mineralized nodules around the cells in all groups, with the 1.2 mg/mL group having more and denser nodules. The immunofluorescence staining revealed that the expressions of RUNX2 and OCN proteins in all concentration groups increased compared to the control group, with the 1.2 mg/mL group showing the strongest protein expression (P<0.05).
CONCLUSION
The study successfully prepares nanoflowers, among which the 1.2 mg/mL nanoflowers exhibits excellent cell compatibility, antioxidant properties, and osteogenic induction capability, demonstrating their potential as an artificial bone substitute material.
Animals
;
Osteogenesis/drug effects*
;
Mesenchymal Stem Cells/drug effects*
;
Calcium Phosphates/pharmacology*
;
Rats, Sprague-Dawley
;
Rats
;
Antioxidants/chemistry*
;
Cells, Cultured
;
Cell Differentiation/drug effects*
;
Nanostructures/chemistry*
;
Tissue Engineering/methods*
;
Bone Marrow Cells/cytology*
;
Coculture Techniques
;
Tissue Scaffolds/chemistry*
;
Male
;
Biocompatible Materials/chemistry*
;
Cell Survival
;
Core Binding Factor Alpha 1 Subunit/metabolism*
;
Cell Proliferation
3.Effects of p38 phosphorylation on stemness maintenance and chemotherapy drug resistance of PANC-1 cells.
Xueying SHI ; Jinbo YU ; Shihai YANG ; Jin ZHAO
Chinese Journal of Cellular and Molecular Immunology 2025;41(2):116-124
Objective The aim of this study was to investigate the effect of p38 on stem cell maintenance of pancreatic cancer. Methods Human pancreatic cancer cells PANC-1 were treated with different concentrations of 5-fluorouracil(5-FU)(0.5×IC50, IC50, and 2×IC50) for 24 hours, and VX-702 (p38 phosphorylation inhibitor) was added, and the cells were inoculated in 6-well culture dishes with ultra-low adhesion to observe the changes of sphere tumors. The expression levels of cyclin-dependent kinase 2(CDK2), cyclin B1 and D1, Octamer-binding transcription factor 4(OCT4), SRY-box transcription factor 2(SOX2), Nanog and p38 were measured by Western blot. The mRNA expression levels of p38, OCT4, Nanog and SOX2 were tested by RT-PCR. Cell cycle, apoptosis, and the proportion of CD44+CD133+PANC-1 cells were evaluated by flow cytometry. Results The results showed that 5-FU inhibited the formation of tumor spheres in PANC-1 cells, increased CD44+CD133+cell fragments, down-regulated the expression of OCT4, Nanog and SOX2, and inhibited the stemness maintenance of PANC-1 tumor stem cells. Phosphorylation of PANC-1 cells was inhibited by a highly selective p38 MAPK inhibitor, VX-702(p38 mitogen-activated protein kinase inhibitor), which had the same effect as 5-FU treatment. When VX-702 combined with 5-FU was used to treat PANC-1 cells, the therapeutic effect was enhanced. Conclusion p38 inhibitors decreased PANC-1 cell activity and increased cell apoptosis. p38 inhibitors inhibit the stemness maintenance of pancreatic cancer stem cells.
Humans
;
Phosphorylation/drug effects*
;
Cell Line, Tumor
;
p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors*
;
Neoplastic Stem Cells/metabolism*
;
Drug Resistance, Neoplasm/drug effects*
;
Fluorouracil/pharmacology*
;
Pancreatic Neoplasms/pathology*
;
Apoptosis/drug effects*
;
SOXB1 Transcription Factors/genetics*
;
Octamer Transcription Factor-3/genetics*
4.The Enhancing Effects and Underlying Mechanism of Ionizing Radiation on Adipogenic Differentiation of Mesenchymal Stem Cells via Regulating Oxidative Stress Pathway.
Fu-Hao YU ; Bo-Feng YIN ; Pei-Lin LI ; Xiao-Tong LI ; Jia-Yi TIAN ; Run-Xiang XU ; Jie TANG ; Xiao-Yu ZHANG ; Wen-Jing ZHANG ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):246-254
OBJECTIVE:
To investigate the effects and underlying mechanism of ionizing radiation on the adipogenic of mesenchymal stem cells (MSCs).
METHODS:
Mouse MSCs were cultured in vitro and treated with 2 Gy and 6 Gy radiation with 60Co, and the radiation dose rate was 0.98 Gy/min. Bulk RNA-seq was performed on control and irradiated MSCs. The changes of adipogenic differentiation and oxidative stress pathways of MSC were revealed by bioinformatics analysis. Oil Red O staining was used to detect the adipogenic differentiation ability of MSCs in vitro, and real-time fluorescence quantitative PCR (qPCR) was used to detect the expression differences of key regulatory factors Cebpa, Lpl and Pparg after radiation treatment. At the same time, qPCR and Western blot were used to detect the effect of inhibition of Nrf2, a key factor of antioxidant stress pathway, on the expression of key regulatory factors of adipogenesis. Moreover, the species conservation of the irradiation response of human bone marrow MSCs and mouse MSC was determined by qPCR.
RESULTS:
Bulk RNA-seq suggested that ionizing radiation promotes adipogenic differentiation of MSCs and up-regulation of oxidative stress-related genes and pathways. The results of Oil Red O staining and qPCR showed that ionizing radiation promoted the adipogenesis of MSCs, with high expression of Cebpa, Lpl and Pparg, as well as oxidative stress-related gene Nrf2. Nrf2 pathway inhibitors could further enhance the adipogenesis of MSCs in bone marrow after radiation. Notably, the similar regulation of oxidative pathways and enhanced adipogenesis post irradiation were observed in human bone marrow MSCs. In addition, irradiation exposure led to up-regulated mRNA expression of interleukin-6 and down-regulated mRNA expression of colony stimulating factor 2 in human bone marrow MSCs.
CONCLUSION
Ionizing radiation promotes adipogenesis of MSCs in mice, and oxidative stress pathway participates in this effect, blocking Nrf2 further promotes the adipogenesis of MSCs. Additionally, irradiation activates oxidative pathways and promotes adipogenic differentiation of human bone marrow MSCs.
Mesenchymal Stem Cells/cytology*
;
Oxidative Stress/radiation effects*
;
Animals
;
Adipogenesis/radiation effects*
;
Mice
;
Radiation, Ionizing
;
Cell Differentiation/radiation effects*
;
Humans
;
NF-E2-Related Factor 2/metabolism*
;
PPAR gamma
;
Cells, Cultured
5.Preparation and Evaluation of Clinical-Grade Human Umbilical Cord-Derived Mesenchymal Stem Cells with High Expression of Hematopoietic Supporting Factors.
Jie TANG ; Pei-Lin LI ; Xiao-Yu ZHANG ; Xiao-Tong LI ; Fu-Hao YU ; Jia-Yi TIAN ; Run-Xiang XU ; Bo-Feng YIN ; Li DING ; Heng ZHU
Journal of Experimental Hematology 2025;33(3):892-898
OBJECTIVE:
To prepare clinical-grade human umbilical cord-derived mesenchymal stem cells (hUC-MSC) with high expression of hematopoietic supporting factors and evaluate their stem cell characteristics.
METHODS:
Fetal umbilical cord tissues were collected from healthy postpartum women during full-term cesarean section. Wharton's jelly was mechanically separated and hUC-MSCs were obtained by explant culture method and enzyme digestion method in an animal serum-free culture system with addition of human platelet lysate. The phenotypic characteristics of hUC-MSCs obtained by two methods were detected by flow cytometry. The differences in proliferation ability between the two groups of hUC-MSCs were identified through CCK-8 assay and colony forming unit-fibroblast (CFU-F) assay. The differences in multilineage differentiation potential between the two groups of hUC-MSCs were identified through induction of adipogenic, osteogenic, and chondrogenic differentiation. The mRNA expression levels of hematopoietic supporting factors such as SCF, IL-3, CXCL12, VCAM1 and ANGPT1 in the two groups of hUC-MSCs were identified by real-time fluorescence quantiative PCR(RT-qPCR).
RESULTS:
The results of flow cytometry showed that hUC-MSCs obtained by the two methods both expressed high levels of CD73, CD90 and CD105, while lowly expressed CD31, CD45 and HLA-DR. The results of CCK-8 and CFU-F assay showed that the proliferation ability of hUC-MSCs obtained by explant culture method was better than those obtained by enzyme digestion method. The results of the triple lineage differentiation experiment showed that there was no significant difference in multilineage differentiation potential between the two grous of hUC-MSCs. The results of RT-qPCR showed that the mRNA expression levels of hematopoietic supporting factors SCF, IL-3, CXCL12, VCAM1 and ANGPT1 in hUC-MSCs obtained by explant cultrue method were higher than those obtained by enzyme digestion method.
CONCLUSION
Clinical-grade hUC-MSCs with high expression levels of hematopoietic supporting factors were successfully cultured in an animal serum-free culture system.
Humans
;
Mesenchymal Stem Cells/metabolism*
;
Umbilical Cord/cytology*
;
Cell Differentiation
;
Female
;
Cell Proliferation
;
Cells, Cultured
;
Chemokine CXCL12/metabolism*
;
Angiopoietin-1/metabolism*
;
Vascular Cell Adhesion Molecule-1/metabolism*
;
Stem Cell Factor/metabolism*
;
Flow Cytometry
;
Pregnancy
6.Knockdown of NPTX1 promotes osteogenic differentiation of human bone marrow mesenchymal stem cells.
Ting SHUAI ; Yanyan GUO ; Chunping LIN ; Xiaomei HOU ; Chanyuan JIN
Journal of Peking University(Health Sciences) 2025;57(1):7-12
OBJECTIVE:
To initially investigate the function of neuronal pentraxin 1 (NPTX1) gene on osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs).
METHODS:
hBMSCs were induced to undergo osteogenic differentiation, and then RNA was collected at different time points, namely 0, 3, 7, 10 and 14 d. The mRNA expression levels of key genes related with osteogenic differentiation, including runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), osteocalcin (OCN), and NPTX1, were detected on the basis of quantitative real-time polymerase chain reaction (qPCR) technology. In order to establish a stable NPTX1-knockdown hBMSCs cell line, NPTX1 shRNA lentivirus was constructed and used to infect hBMSCs. ALP staining, alizarin red (AR) staining, and qPCR were employed to assess the impact of NPTX1-knockdown on the osteogenic differentiation ability of hBMSCs.
RESULTS:
The results showed that during the osteogenic differentiation of hBMSCs in vitro, the mRNA expression levels of osteogenic genes RUNX2, ALP and OCN significantly increased compared with 0 d, while NPTX1 expression decreased markedly (P < 0.01) as the osteogenic induction period exten-ded. At 72 h post-infection with lentivirus, the result of qPCR indicated that the knockdown efficiency of NPTX1 was over 60%. After knocking down NPTX1 in hBMSCs, RNA was extracted from both the NPTX1-knockdown group (sh NPTX1 group) and the control group (shNC group) cultured in regular proliferation medium. The results of qPCR showed that the expression levels of osteogenic-related genes RUNX2 and osterix (OSX) were significantly higher in the sh NPTX1 group compared with the shNC group (P < 0.01). ALP staining revealed a significantly deeper coloration in the sh NPTX1 group than in the shNC group at the end of 7 d of osteogenic induction. AR staining demonstrated a marked increase in mineralized nodules in the sh NPTX1 group compared with the shNC group at the end of 14 d of osteogenic induction.
CONCLUSION
NPTX1 exerts a modulatory role in the osteogenic differentiation of hBMSCs, and its knockdown has been found to enhance the osteogenic differentiation of hBMSCs. This finding implies that NPTX1 could potentially serve as a therapeutic target for the treatment of osteogenic abnormalities, including osteoporosis.
Humans
;
Mesenchymal Stem Cells/cytology*
;
Osteogenesis/genetics*
;
Cell Differentiation/genetics*
;
Nerve Tissue Proteins/genetics*
;
Cells, Cultured
;
C-Reactive Protein/genetics*
;
RNA, Small Interfering/genetics*
;
Core Binding Factor Alpha 1 Subunit/metabolism*
;
Bone Marrow Cells/cytology*
;
Gene Knockdown Techniques
;
Osteocalcin/metabolism*
;
Alkaline Phosphatase/metabolism*
;
RNA, Messenger/metabolism*
7.Tougu Xiaotong Capsule promotes repair of osteoarthritis cartilage damage in mice by activating the CXCL12/GDF5 pathway.
Changlong FU ; Lu XU ; Ruolan CHEN ; Jinghang YANG ; Yan LUO ; Yanfeng HUANG
Journal of Southern Medical University 2025;45(6):1122-1130
OBJECTIVES:
To explore the mechanism by which Tougu Xiaotong Capsule (TXC) promotes chondrogenic differentiation and cartilage repair in mice with osteoarthritis (OA).
METHODS:
Fifty 8-week-old male C57BL mice were randomly divided into normal control group, cartilage damage (induced by subchondral ring-shaped drilling) model group and TXC treatment groups at low, moderate and high doses (184, 368 and 736 mg/kg, respectively). Saline (in normal control and model groups) and TXC were administered after modeling by daily gavage for 6 consecutive weeks. The changes of cartilage damage in the mice were assessed by measuring thermal withdrawal latency (TWL) and mechanical withdrawal threshold (MWT) and using micro-CT, modified safranine O and fast green staining, HE staining, and qPCR. Primary cultures of mouse synovial mesenchymal stem cells (SMSCs) with lentivirus vector transfection for interfering CXCL12, TXC treatment, or both for 24 h were examined for chondrogenic differentiation using immunofluorescence staining, scratch assay, immunocytochemistry, and Western blotting.
RESULTS:
In mouse models with cartilage damage, TXC treatment at the moderate dose significantly alleviated joint pain, promoted cartilage repair, and upregulated the mRNA expression levels of CXCL12, GDF5, collagen II, aggrecan, Comp and Sox9 in the cartilage tissue. In primary mouse SMSCs, CXCL12 knockdown resulted in significant reduction of GDF5 protein expression, migration ability and Sox9 protein expression, and these changes were obviously reversed by TXC treatment.
CONCLUSIONS
TXC promotes chondrogenic differentiation of mouse SMSCs to promote repair of cartilage damage in mice by activating the CXCL12/GDF5 pathway.
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Osteoarthritis/metabolism*
;
Male
;
Growth Differentiation Factor 5/metabolism*
;
Mice, Inbred C57BL
;
Mice
;
Chemokine CXCL12/metabolism*
;
Signal Transduction/drug effects*
;
Cell Differentiation/drug effects*
;
Cartilage, Articular/drug effects*
;
Mesenchymal Stem Cells/cytology*
8.Single-cell transcriptomics identifies PDGFRA+ progenitors orchestrating angiogenesis and periodontal tissue regeneration.
Jianing LIU ; Junxi HE ; Ziqi ZHANG ; Lu LIU ; Yuan CAO ; Xiaohui ZHANG ; Xinyue CAI ; Xinyan LUO ; Xiao LEI ; Nan ZHANG ; Hao WANG ; Ji CHEN ; Peisheng LIU ; Jiongyi TIAN ; Jiexi LIU ; Yuru GAO ; Haokun XU ; Chao MA ; Shengfeng BAI ; Yubohan ZHANG ; Yan JIN ; Chenxi ZHENG ; Bingdong SUI ; Fang JIN
International Journal of Oral Science 2025;17(1):56-56
Periodontal bone defects, primarily caused by periodontitis, are highly prevalent in clinical settings and manifest as bone fenestration, dehiscence, or attachment loss, presenting a significant challenge to oral health. In regenerative medicine, harnessing developmental principles for tissue repair offers promising therapeutic potential. Of particular interest is the condensation of progenitor cells, an essential event in organogenesis that has inspired clinically effective cell aggregation approaches in dental regeneration. However, the precise cellular coordination mechanisms during condensation and regeneration remain elusive. Here, taking the tooth as a model organ, we employed single-cell RNA sequencing to dissect the cellular composition and heterogeneity of human dental follicle and dental papilla, revealing a distinct Platelet-derived growth factor receptor alpha (PDGFRA) mesenchymal stem/stromal cell (MSC) population with remarkable odontogenic potential. Interestingly, a reciprocal paracrine interaction between PDGFRA+ dental follicle stem cells (DFSCs) and CD31+ Endomucin+ endothelial cells (ECs) was mediated by Vascular endothelial growth factor A (VEGFA) and Platelet-derived growth factor subunit BB (PDGFBB). This crosstalk not only maintains the functionality of PDGFRA+ DFSCs but also drives specialized angiogenesis. In vivo periodontal bone regeneration experiments further reveal that communication between PDGFRA+ DFSC aggregates and recipient ECs is essential for effective angiogenic-osteogenic coupling and rapid tissue repair. Collectively, our results unravel the importance of MSC-EC crosstalk mediated by the VEGFA and PDGFBB-PDGFRA reciprocal signaling in orchestrating angiogenesis and osteogenesis. These findings not only establish a framework for deciphering and promoting periodontal bone regeneration in potential clinical applications but also offer insights for future therapeutic strategies in dental or broader regenerative medicine.
Receptor, Platelet-Derived Growth Factor alpha/metabolism*
;
Humans
;
Neovascularization, Physiologic/physiology*
;
Dental Sac/cytology*
;
Single-Cell Analysis
;
Transcriptome
;
Mesenchymal Stem Cells/metabolism*
;
Bone Regeneration
;
Animals
;
Dental Papilla/cytology*
;
Periodontium/physiology*
;
Stem Cells/metabolism*
;
Regeneration
;
Angiogenesis
9.SMAD2/3-SMYD2 and developmental transcription factors cooperate with cell-cycle inhibitors to guide tissue formation.
Stefania MILITI ; Reshma NIBHANI ; Martin POOK ; Siim PAUKLIN
Protein & Cell 2025;16(4):260-285
Tissue formation and organ homeostasis are achieved by precise coordination of proliferation and differentiation of stem cells and progenitors. While deregulation of these processes can result in degenerative disease or cancer, their molecular interplays remain unclear. Here we show that the switch of human pluripotent stem cell (hPSC) self-renewal to differentiation is associated with the induction of distinct cyclin-dependent kinase inhibitors (CDKIs). In hPSCs, Activin/Nodal/TGFβ signaling maintains CDKIs in a poised state via SMAD2/3-NANOG-OCT4-EZH2-SNON transcriptional complex. Upon gradual differentiation, CDKIs are induced by successive transcriptional complexes between SMAD2/3-SMYD2 and developmental regulators such as EOMES, thereby lengthening the G1 phase. This, in turn, induces SMAD2/3 transcriptional activity by blocking its linker phosphorylation. Such SMAD2/3-CDKI positive feedback loops drive the exit from pluripotency and stepwise cell-fate specification that could be harnessed for producing cells for therapeutic applications. Our study uncovers fundamental mechanisms of how cell-fate specification is interconnected to cell-cycle dynamics and provides insight into autonomous circuitries governing tissue self-formation.
Humans
;
Smad2 Protein/genetics*
;
Smad3 Protein/genetics*
;
Cell Differentiation
;
Pluripotent Stem Cells/metabolism*
;
Signal Transduction
;
Octamer Transcription Factor-3/genetics*
;
Enhancer of Zeste Homolog 2 Protein/genetics*
;
Nanog Homeobox Protein/genetics*
;
Phosphorylation
10.Electroacupuncture at ST36 improves gastrointestinal motility disorders by promoting enteric nervous system regeneration through GDNF/Ret signaling in diabetic mice.
Jin-Lu GUO ; Shi LIU ; Sheng-Jie DING ; Xin YANG ; Fan DU
Journal of Integrative Medicine 2025;23(5):548-559
OBJECTIVE:
Diabetes-induced gastrointestinal (GI) motility disorders are increasingly prevalent. Damage to the enteric nervous system (ENS), composed primarily of enteric neurons and glial cells, is an essential mechanism involved in these disorders. Although electroacupuncture (EA) has shown the potential to mitigate enteric neuronal loss, its mechanism is not fully understood. Additionally, the effects of EA on enteric glial cells have not been investigated. Enteric neural precursor cells (ENPCs) contribute to the structural and functional integrity of the ENS, yet whether EA enhances their differentiation into enteric neurons and glial cells remains unexplored. This study investigates whether EA promotes ENS repair through enhancing ENPC-derived neurogenesis and gliogenesis and elucidates the potential molecular mechanisms involved.
METHODS:
Transgenic mice were used to trace Nestin+/nerve growth factor receptor (Ngfr)+ ENPCs labeled with green fluorescent protein (GFP) in vivo. Mice were randomly divided into four groups: control, diabetes mellitus (DM), DM + sham EA, and DM + EA. The effects of EA on diabetic mice were evaluated by GI motility, ENS structure, and ENPC differentiation. Glial cell line-derived neurotrophic factor (GDNF)/Ret signaling was detected to clarify the underlying molecular mechanisms.
RESULTS:
EA alleviated diabetes-induced GI motility disorders, as indicated by reduced whole gut transit time, shortened colonic bead expulsion time, and enhanced smooth muscle contractility. Furthermore, EA attenuated diabetes-induced losses of enteric neurons and glial cells, thereby restoring ENS integrity. Notably, EA reversed the diabetes-induced decrease in ENPCs and significantly increased the absolute number and the proportion of ENPC-derived enteric neurons. However, immunofluorescence analyses revealed no colocalization between EA-induced glial fibrillary acidic protein+ glial cells and GFP-labeled ENPCs. Mechanistically, GDNF/Ret signaling was elevated in intestinal tissues and upregulated in ENPCs in EA-treated diabetic mice.
CONCLUSION
EA facilitates ENS repair by promoting Nestin+/Ngfr+ ENPC differentiation into enteric neurons via upregulation of GDNF/Ret signaling, and driving enteric gliogenesis from non-Nestin+/Ngfr+ ENPCs. These findings highlight EA's role in ameliorating diabetes-induced GI dysmotility through ENPC-derived ENS restoration. Please cite this article as: Guo JL, Liu S, Ding SJ, Yang X, Du F. Electroacupuncture at ST36 improves gastrointestinal motility disorders by promoting enteric nervous system regeneration through GDNF/Ret signaling in diabetic mice. J Integr Med. 2025; 23(5):548-559.
Animals
;
Electroacupuncture
;
Enteric Nervous System/physiology*
;
Gastrointestinal Motility/physiology*
;
Glial Cell Line-Derived Neurotrophic Factor/metabolism*
;
Diabetes Mellitus, Experimental/therapy*
;
Signal Transduction
;
Mice
;
Gastrointestinal Diseases/physiopathology*
;
Proto-Oncogene Proteins c-ret/metabolism*
;
Mice, Transgenic
;
Male
;
Nerve Regeneration
;
Neural Stem Cells
;
Mice, Inbred C57BL
;
Acupuncture Points

Result Analysis
Print
Save
E-mail