1.Correlation between differences in starch gelatinization, water distribution, and terpenoid content during steaming process of Curcuma kwangsiensis root tubers by multivariate statistical analysis.
Yan LIANG ; Meng-Na YANG ; Xiao-Li QIN ; Zhi-Yong ZHANG ; Zhong-Nan SU ; Hou-Kang CAO ; Ke-Feng ZHANG ; Ming-Wei WANG ; Bo LI ; Shuo LI
China Journal of Chinese Materia Medica 2025;50(10):2684-2694
To elucidate the mechanism by which steaming affects the quality of Curcuma kwangsiensis root tubers, methods such as LSCM, RVA, dual-wavelength spectrophotometry, LF-NMR, and LC-MS were employed to qualitatively and quantitatively detect changes in starch gelatinization characteristics, water distribution, and material composition of C. kwangsiensis root tubers under different steaming durations. Based on multivariate statistical analysis, the correlation between differences in gelatinization parameters, water distribution, and terpenoid material composition was investigated. The results indicate that steaming affects both starch gelatinization and water distribution in C. kwangsiensis. During the steaming process, transformations occur between amylose and amylopectin, as well as between semi-bound water and free water. After 60 min of steaming, starch gelatinization and water distribution reached an equilibrium state. The content of amylopectin, the amylose-to-amylopectin ratio, and parameters such as gelatinization temperature, viscosity, breakdown value, and setback value were significantly correlated(P≤0.05). Additionally, the amylose-to-amylopectin ratio was significantly correlated with total free water and total water content(P≤0.05). Steaming induced differences in the material composition of C. kwangsiensis root tubers. Clustering of primary metabolites in the OPLS-DA model was distinct, while secondary metabolites were classified into 9 clusters using the K-means clustering algorithm. Differential terpenoid metabolites such as(-)-α-curcumene were significantly correlated with zerumbone, retinal, and all-trans-retinoic acid(P<0.05). Curcumenol was significantly correlated with isoalantolactone and ursolic acid(P<0.05), while all-trans-retinoic acid was significantly correlated with both zerumbone and retinal(P<0.05). Alpha-tocotrienol exhibited a significant correlation with retinal and all-trans-retinoic acid(P<0.05). Amylose was extremely significantly correlated with(-)-α-curcumene, curcumenol, zerumbone, retinal, all-trans-retinoic acid, and α-tocotrienol(P<0.05). Amylopectin was significantly correlated with zerumbone(P<0.05) and extremely significantly correlated with(-)-α-curcumene, curcumenol, zerumbone, retinal, all-trans-retinoic acid, and 9-cis-retinoic acid(P<0.01). The results provide scientific evidence for elucidating the mechanism of quality formation of steamed C. kwangsiensis root tubers as a medicinal material.
Curcuma/chemistry*
;
Starch/chemistry*
;
Multivariate Analysis
;
Water/chemistry*
;
Terpenes/analysis*
;
Plant Roots/chemistry*
;
Plant Tubers/chemistry*
;
Drugs, Chinese Herbal/chemistry*
2.Role of antibiotic delivery system targeting bacterial biofilm based on ε-poly- L-lysine and cyclodextrin in treatment of bone and joint infections.
Tiexin LIU ; Junqing LIN ; Xianyou ZHENG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(3):362-369
OBJECTIVE:
To explore the mechanism of antibiotic delivery system targeting bacterial biofilm with linezolid (LZD) based on ε-poly- L-lysine (ε-PLL) and cyclodextrin (CD) (ε-PLL-CD-LZD), aiming to enhance antibiotic bioavailability, effectively penetrate and disrupt biofilm structures, and thereby improve the treatment of bone and joint infections.
METHODS:
ε-PLL-CD-LZD was synthesized via chemical methods. The grafting rate of CD was characterized using nuclear magnetic resonance. In vitro biocompatibility was evaluated through live/dead cell staining after co-culturing with mouse embryonic osteoblast precursor cells (MC3T3-E1), human umbilical vein endothelial cells, and mouse embryonic fibroblast cells (3T3-L1). The biofilm-enrichment capacity of ε-PLL-CD-LZD was assessed using Staphylococcus aureus biofilms through enrichment studies. Its biofilm eradication efficacy was investigated via minimum inhibitory concentration (MIC) determination, scanning electron microscopy, and live/dead bacterial staining. A bone and joint infection model in male Sprague-Dawley rats was established to validate the antibacterial effects of ε-PLL-CD-LZD.
RESULTS:
In ε-PLL-CD-LZD, the average grafting rate of CD reached 9.88%. The cell viability exceeded 90% after co-culturing with three types cells. The strong biofilm enrichment capability was observed with a MIC of 2 mg/L. Scanning electron microscopy observations revealed the effective disruption of biofilm structure, indicating potent biofilm eradication capacity. In vivo rat experiments demonstrated that ε-PLL-CD-LZD significantly reduced bacterial load and infection positivity rate at the lesion site ( P<0.05).
CONCLUSION
The ε-PLL-CD antibiotic delivery system provides a treatment strategy for bone and joint infections with high clinical translational significance. By effectively enhancing antibiotic bioavailability, penetrating, and disrupting biofilms, it demonstrated significant anti-infection effects in animal models.
Biofilms/drug effects*
;
Animals
;
Anti-Bacterial Agents/pharmacology*
;
Polylysine/chemistry*
;
Cyclodextrins/administration & dosage*
;
Humans
;
Linezolid/pharmacology*
;
Staphylococcus aureus/physiology*
;
Rats, Sprague-Dawley
;
Mice
;
Rats
;
Male
;
Drug Delivery Systems
;
Staphylococcal Infections/drug therapy*
;
Microbial Sensitivity Tests
;
Human Umbilical Vein Endothelial Cells
;
Osteoblasts/cytology*
3.Empirical and modified hemostatic resuscitation for liver blast injury combined with seawater immersion: A preliminary study.
Haoyang YANG ; Chenglin DAI ; Dongzhaoyang ZHANG ; Can CHEN ; Zhao YE ; Xin ZHONG ; Yijun JIA ; Renqing JIANG ; Wenqiong DU ; Zhaowen ZONG
Chinese Journal of Traumatology 2025;28(3):220-225
PURPOSE:
To compare the effects of empirical and modified hemostatic resuscitation for liver blast injury combined with seawater immersion.
METHODS:
Thirty rabbits were subjected to liver blast injury combined with seawater immersion, and were then divided into 3 groups randomly (n = 10 each): group A (no treatment after immersion), group B (empirical resuscitation with 20 mL hydroxyethyl starch, 50 mg tranexamic acid, 25 IU prothrombin complex concentrate and 50 mg/kg body weight fibrinogen concentrate), and group C (modified resuscitation with additional 10 IU prothrombin complex concentrate and 20 mg/kg body weight fibrinogen concentrate based on group B). Blood samples were gathered at specified moments for assessment of thromboelastography, routine coagulation test, and biochemistry. Mean arterial pressure, heart rate, and survival rate were also documented at each time point. The Kolmogorov-Smirnov test was used to examine the normality of data distribution. Multigroup comparisons were conducted with one-way ANOVA.
RESULTS:
Liver blast injury combined with seawater immersion resulted in severe coagulo-fibrinolytic derangement as indicated by prolonged prothrombin time (s) (11.53 ± 0.98 vs. 7.61 ± 0.28, p<0.001), activated partial thromboplastin time (APTT) (s) (33.48 ± 6.66 vs. 18.23 ± 0.89, p<0.001), reaction time (R) (min) (5.85 ± 0.96 vs. 2.47 ± 0.53, p<0.001), decreased maximum amplitude (MA) (mm) (53.20 ± 5.99 vs. 74.92 ± 5.76, p<0.001) and fibrinogen concentration (g/L) (1.19 ± 0.29 vs. 1.89 ± 0.32, p = 0.003), and increased D-dimer concentration (mg/L) (0.38 ± 0.32 vs. 0.05 ± 0.03, p = 0.005). Both empirical and modified hemostatic resuscitation could improve the coagulo-fibrinolytic states and organ function, as indicated by shortened APTT and R values, decreased D-dimer concentration, increased fibrinogen concentration and MA values, lower concentration of blood urea nitrogen and creatine kinase-MB in group B and group C rabbits in comparison to that observed in group A. Further analysis found that the R values (min) (4.67 ± 0.84 vs. 3.66 ± 0.98, p = 0.038), APTT (s) (23.16 ± 2.75 vs. 18.94 ± 1.05, p = 0.001), MA (mm) (60.10 ± 4.74 vs. 70.21 ± 3.01, p < 0.001), and fibrinogen concentration (g/L) (1.68 ± 0.21 vs. 1.94 ± 0.16, p = 0.013) were remarkably improved in group C than in group B at 2 h and 4 h after injury. In addition, the concentration of blood urea nitrogen (mmol/L) (24.11 ± 1.96 vs. 21.00 ± 3.78, p = 0.047) and creatine kinase-MB (U/L) (85.50 ± 13.60 vs. 69.74 ± 8.56, p = 0.013) were lower in group C than in group B at 6 h after injury. The survival rates in group B and group C were significantly higher than those in group A at 4 h and 6 h after injury (p < 0.001), however, there were no statistical differences in survival rates between group B and group C at each time point.
CONCLUSIONS
Modified hemostatic resuscitation could improve the coagulation parameters and organ function better than empirical hemostatic resuscitation.
Animals
;
Rabbits
;
Resuscitation/methods*
;
Liver/injuries*
;
Seawater
;
Blast Injuries/therapy*
;
Fibrinogen/administration & dosage*
;
Male
;
Tranexamic Acid/administration & dosage*
;
Immersion
;
Hydroxyethyl Starch Derivatives/administration & dosage*
4.Therapeutic effects of inulin-type oligosaccharides of Morinda officinalis on Streptococcus pneumoniae meningitis in mice.
Zehan LI ; Meng LIANG ; Gencheng HAN ; Xuewu ZHANG
Journal of Southern Medical University 2025;45(3):577-586
OBJECTIVES:
To investigate the therapeutic effects of inulin-type oligosaccharides of Morinda officinalis (IOMO) in a murine model of Streptococcus pneumoniae meningitis (SPM) and explore its possible mechanisms.
METHODS:
A total of 120 male C57BL/6J mice were randomly assigned into Sham, SPM+Saline, SPM+IOMO (25 mg/kg), and SPM+IOMO (50 mg/kg) groups. After modeling, the mice received daily gavage of saline or IOMO at the indicated doses for 7 consecutive days, and the changes in symptom scores and mortality of the mice were monitored. Brain pathology and neuronal injury of the mice were assessed using HE and Nissl staining, and qRT-PCR was performed to detect mRNA levels of the inflammatory mediators. Brain edema and blood-brain barrier (BBB) permeability of the mice were evaluated by measuring brain water content and Evans blue (EB) staining; Western blotting was used to analyze the expressions of BBB-associated proteins, and flow cytometry was employed to detect IFN‑γ expression level in the infiltrating lymphocytes. Open-field test (OFT) and novel object recognition test (NORT) were conducted to assess learning and memory ability of the mice on day 21 after modeling.
RESULTS:
IOMO treatment at 50 mg/kg significantly reduced the symptom scores and mortality rate of SPM mice, alleviated brain damage, and downregulated mRNA levels of IL-6, TNF‑α, IL-1β, IL-18, IFN‑γ, iNOS, NLRP3, ASC, caspase-1 and GSDMD in the brain tissue. IOMO treatment also decreased brain water content and EB leakage, upregulated VE-cadherin and occludin expressions, and suppressed AQP4, iNOS, and IFN‑γ levels of the mice. IOMO-treated mice exhibited improved learning and memory compared with the saline-treated mice on day 21 after SPM modeling.
CONCLUSIONS
IOMO alleviates SPM symptoms, reduces mortality, and mitigates cognitive deficits in mice possibly by suppressing cerebral inflammation and protecting BBB functions.
Animals
;
Morinda/chemistry*
;
Mice, Inbred C57BL
;
Male
;
Mice
;
Meningitis, Pneumococcal/drug therapy*
;
Blood-Brain Barrier/metabolism*
;
Inulin/therapeutic use*
;
Oligosaccharides/therapeutic use*
;
Disease Models, Animal
;
Interferon-gamma/metabolism*
;
Brain Edema
5.Epidural hydroxyethyl starch ameliorating postdural puncture headache after accidental dural puncture.
Yin ZHOU ; Zhiyu GENG ; Linlin SONG ; Dongxin WANG
Chinese Medical Journal 2023;136(1):88-95
BACKGROUND:
No convincing modalities have been shown to completely prevent postdural puncture headache (PDPH) after accidental dural puncture (ADP) during obstetric epidural procedures. We aimed to evaluate the role of epidural administration of hydroxyethyl starch (HES) in preventing PDPH following ADP, regarding the prophylactic efficacy and side effects.
METHODS:
Between January 2019 and February 2021, patients with a recognized ADP during epidural procedures for labor or cesarean delivery were retrospectively reviewed to evaluate the prophylactic strategies for the development of PDPH at a single tertiary hospital. The development of PDPH, severity and duration of headache, adverse events associated with prophylactic strategies, and hospital length of stay postpartum were reported.
RESULTS:
A total of 105 patients experiencing ADP received a re-sited epidural catheter. For PDPH prophylaxis, 46 patients solely received epidural analgesia, 25 patients were administered epidural HES on epidural analgesia, and 34 patients received two doses of epidural HES on and after epidural analgesia, respectively. A significant difference was observed in the incidence of PDPH across the groups (epidural analgesia alone, 31 [67.4%]; HES-Epidural analgesia, ten [40.0%]; HES-Epidural analgesia-HES, five [14.7%]; P <0.001). No neurologic deficits, including paresthesias and motor deficits related to prophylactic strategies, were reported from at least 2 months to up to more than 2 years after delivery. An overall backache rate related to HES administration was 10%. The multivariable regression analysis revealed that the HES-Epidural analgesia-HES strategy was significantly associated with reduced risk of PDPH following ADP (OR = 0.030, 95% confidence interval: 0.006-0.143; P < 0.001).
CONCLUSIONS
The incorporated prophylactic strategy was associated with a great decrease in the risk of PDPH following obstetric ADP. This strategy consisted of re-siting an epidural catheter with continuous epidural analgesia and two doses of epidural HES, respectively, on and after epidural analgesia. The efficacy and safety profiles of this strategy have to be investigated further.
Pregnancy
;
Female
;
Humans
;
Post-Dural Puncture Headache/epidemiology*
;
Anesthesia, Obstetrical/adverse effects*
;
Retrospective Studies
;
Punctures
;
Starch
;
Blood Patch, Epidural
6.α-amylase detection methods and applications.
Chinese Journal of Biotechnology 2023;39(3):898-911
α-amylase is an endonucleoside hydrolase that hydrolyzes the α-1, 4-glycosidic bonds inside polysaccharides, such as starch, to generate oligosaccharides, dextrins, maltotriose, maltose and a small amount of glucose. Due to the importance of α-amylase in food industry, human health monitoring and pharmaceuticals, detection of its activity is widely required in the breeding of α-amylase producing strains, in vitro diagnosis, development of diabetes drugs, and the control of food quality. In recent years, many new α-amylase detection methods have been developed with improved speed and sensitivity. This review summarized recent processes in the development and applications of new α-amylase detection methods. The major principle of these detection methods were introduced, and their advantages and disadvantages were compared to facilitate future development and applications of α-amylase detection methods.
Humans
;
alpha-Amylases/chemistry*
;
Polysaccharides
;
Oligosaccharides
;
Starch
;
Maltose
7.Enzyme production mechanism of anaerobic fungus Orpinomyces sp. YF3 in yak rumen induced by different carbon source.
Xue'er DU ; Linlin ZHOU ; Fan ZHANG ; Yong LI ; Congcong ZHAO ; Lamei WANG ; Junhu YAO ; Yangchun CAO
Chinese Journal of Biotechnology 2023;39(12):4927-4938
In order to investigate the enzyme production mechanism of yak rumen-derived anaerobic fungus Orpinomyces sp. YF3 under the induction of different carbon sources, anaerobic culture tubes were used for in vitro fermentation. 8 g/L of glucose (Glu), filter paper (Flp) and avicel (Avi) were respectively added to 10 mL of basic culture medium as the sole carbon source. The activity of fiber-degrading enzyme and the concentration of volatile fatty acid in the fermentation liquid were detected, and the enzyme producing mechanism of Orpinomyces sp. YF3 was explored by transcriptomics. It was found that, in glucose-induced fermentation solution, the activities of carboxymethyl cellulase, microcrystalline cellulase, filter paper enzyme, xylanase and the proportion of acetate were significantly increased (P < 0.05), the proportion of propionate, butyrate, isobutyrate were significantly decreased (P < 0.05). The results of transcriptome analysis showed that there were 5 949 differentially expressed genes (DEGs) between the Glu group and the Flp group, 10 970 DEGs between the Glu group and the Avi group, and 6 057 DEGs between the Flp group and the Avi group. It was found that the DEGs associated with fiber degrading enzymes were significantly up-regulated in the Glu group. Gene ontology (GO) function enrichment analysis identified that DEGs were mainly associated with the xylan catabolic process, hemicellulose metabolic process, β-glucan metabolic process, cellulase activity, endo-1,4-β-xylanase activity, cell wall polysaccharide metabolic process, carbohydrate catabolic process, glucan catabolic process and carbohydrate metabolic process. Moreover, the differentially expressed pathways associated with fiber degrading enzymes enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were mainly starch and sucrose metabolic pathways and other glycan degradation pathways. In conclusion, Orpinomyces sp. YF3 with glucose as carbon source substrate significantly increased the activity of cellulose degrading enzyme and the proportion of acetate, decreased the proportion of propionate, butyrate and isobutyrate. Furthermore, the degradation ability and energy utilization efficiency of fungus in the presence of glucose were improved by means of regulating the expression of cellulose degrading enzyme gene and participating in starch and sucrose metabolism pathway, and other glycan degradation pathways, which provides a theoretical basis for the application of Orpinomyces sp. YF3 in practical production and facilitates the application of Orpinomyces sp. YF3 in the future.
Animals
;
Cattle
;
Neocallimastigales/metabolism*
;
Anaerobiosis
;
Rumen/microbiology*
;
Propionates/metabolism*
;
Isobutyrates/metabolism*
;
Cellulose/metabolism*
;
Fungi
;
Starch/metabolism*
;
Glucose/metabolism*
;
Acetates
;
Sucrose/metabolism*
;
Cellulases
;
Cellulase
8.Effect of sugammadex on postoperative nausea and vomiting after surgery for intracranial aneurysm.
J CUI ; L YAO ; J L WU ; C Y LU ; Y ZHAO ; Y L ZHAO
Chinese Journal of Surgery 2023;61(8):700-706
Objective: To investigate the effect of sugammadex on postoperative nausea and vomiting(PONV) after intracranial aneurysm surgery. Methods: Data from intracranial aneurysms patients who met the inclusion and exclusion criteria and underwent interventional surgery in the Department of Neurosurgery, Peking University International Hospital from January 2020 to March 2021 were prospectively included. According to the random number table method, the patients were divided by 1∶1 into the neostigmine+atropine group (group N) and the sugammadex group (group S). Use an acceleration muscle relaxation monitor for muscle relaxation monitoring, and administer neostigmine+atropine and sugammadex to block residual muscle relaxation drugs after surgery. The incidence rates of PONV and severity, the appearance of anesthesia, and the correlation between PONV and postoperative complications were recorded in both groups during five periods after surgery: 0-0.5 hours (T1),>0.5-2.0 hours(T2),>2.0-6.0 hours (T3),>6.0-12.0 hours (T4) and >12.0-24.0 hours (T5). Group comparisons of quantitative data were performed by the independent sample t-test, and categorical data was performed by the χ2 or rank sum test. Results: A total of 66 patients were included in the study, including 37 males and 29 female, aged (59.3±15.4) years (range: 18 to 77 years). The incidence rates of PONV of 33 patients in group S at different time periods of T1, T2, T3, T4, and T5 after surgery were respectively 27.3%(9/33),30.3%(10/33),12.1%(4/33),3.0%(1/33),0(0/33),and the incidence rates of PONV of 33 patients in the group N at different time periods of T1, T2, T3, T4 and T5 after surgery were respectively 36.4%(12/33),36.4%(12/33),33.3%(11/33),6.1%(2/33) and 0(0/33).The incidence of PONV was lower in the group S only in the T3 period after reversal than in the group N (χ2=4.227, P=0.040).However, there was no statistically significant difference in the incidence of PONV between the two groups of patients in other periods (all P>0.05). The recovery time for spontaneous breathing in patients in group S was (7.7±1.4) minutes, the extubation time was (12.4±5.3) minutes, and the safe exit time for anesthesia recovery was (12.3±3.4) minutes; the N groups were (13.9±2.0) minutes, (18.2±6.0) minutes, and (18.6±5.2) minutes, respectively; three time periods in group S were shorter than those in group N, and the differences were statistically significant (all P<0.05). The results regarding the occurrence of complications in patients with different levels of PONV at different time intervals after surgery in the two groups were as follows: in the T3 time period of group N, a significant difference was observed only in the occurrence of postoperative complications among patients with different levels of PONV (χ2=24.786, P<0.01). However, in the T4 time period, significant differences were found in the occurrence of postoperative complications among both the same level and different level PONV patients (χ2=15.435, 15.435, both P<0.01). Significant differences were also observed in the occurrence of postoperative complications among the same level and different level PONV patients in both the T3 and T4 time periods of group S (all P<0.01). Conclusion: Sugammadex can be used to reverse muscle relaxation in patients undergoing intracranial aneurysm intervention surgery,and it does not have a significant impact on the incidence of PONV, it can also optimize the quality of anesthesia recovery and reduce the incidence of complications after intracranial aneurysm embolization surgery.
Male
;
Humans
;
Female
;
Sugammadex
;
Postoperative Nausea and Vomiting/chemically induced*
;
Neostigmine/adverse effects*
;
Intracranial Aneurysm/surgery*
;
gamma-Cyclodextrins/adverse effects*
;
Atropine
9.Functional analysis on sucrose transporters in sweet potato.
Yiran LIU ; Zhengdan WU ; Weitai WU ; Chaobin YANG ; Cairui CHEN ; Kai ZHANG
Chinese Journal of Biotechnology 2023;39(7):2772-2793
Sweet potato is an important food crop that can also be used as an industrial raw material. Sucrose is the main form of long-distance carbohydrate transport in plants, and sucrose transporter (SUT) regulates the transmembrane transport and distribution of sucrose during plant growth and metabolism. Moreover, SUT plays a key role in phloem mediated source-to-sink sucrose transport and physiological activities, supplying sucrose for the sink tissues. In this study, the full-length cDNA sequences of IbSUT62788 and IbSUT81616 were obtained by rapid amplification of cDNA ends (RACE) cloning according to the transcripts of the two SUT coding genes which were differentially expressed in sweet potato storage roots with different starch properties. Phylogenetic analysis was performed to clarify the classification of IbSUT62788 and IbSUT81616. The subcellular localization of IbSUT62788 and IbSUT81616 was determined by transient expression in Nicotiana benthamiana. The function of IbSUT62788 and IbSUT81616 in sucrose and hexose absorption and transport was identified using yeast functional complementarity system. The expression pattern of IbSUT62788 and IbSUT81616 in sweet potato organs were analyzed by real-time fluorescence quantitative PCR (RT-qPCR). Arabidopsis plants heterologous expressing IbSUT62788 and IbSUT81616 genes were obtained using floral dip method. The differences in starch and sugar contents between transgenic and wild-type Arabidopsis were compared. The results showed IbSUT62788 and IbSUT81616 encoded SUT proteins with a length of 505 and 521 amino acids, respectively, and both proteins belonged to the SUT1 subfamily. IbSUT62788 and IbSUT81616 were located in the cell membrane and were able to transport sucrose, glucose and fructose in the yeast system. In addition, IbSUT62788 was also able to transport mannose. The expression of IbSUT62788 was higher in leaves, lateral branches and main stems, and the expression of IbSUT81616 was higher in lateral branches, stems and storage roots. After IbSUT62788 and IbSUT81616 were heterologously expressed in Arabidopsis, the plants grew normally, but the biomass increased. The heterologous expression of IbSUT62788 increased the soluble sugar content, leaf size and 1 000-seed weight of Arabidopsis plants. Heterologous expression of IbSUT81616 increased starch accumulation in leaves and root tips and 1 000-seed weight of seeds, but decreased soluble sugar content. The results obtained in this study showed that IbSUT62788 and IbSUT81616 might be important genes regulating sucrose and sugar content traits in sweet potato. They might carry out physiological functions on cell membrane, such as transmembrane transport of sucrose, sucrose into and out of sink tissue, as well as transport and unloading of sucrose into phloem. The changes in traits result from their heterologous expression in Arabidopsis indicates their potential in improving the yield of other plants or crops. The results obtained in this study provide important information for revealing the functions of IbSUT62788 and IbSUT81616 in starch and glucose metabolism and formation mechanism of important quality traits in sweet potato.
Ipomoea batatas/metabolism*
;
Arabidopsis/metabolism*
;
Sucrose/metabolism*
;
Saccharomyces cerevisiae/metabolism*
;
DNA, Complementary
;
Phylogeny
;
Plants, Genetically Modified/genetics*
;
Membrane Transport Proteins/metabolism*
;
Starch/metabolism*
;
Plant Proteins/metabolism*
;
Gene Expression Regulation, Plant
10.Carbohydrate-based gold nanoparticles as colorimetric sensor for cysteine
Marc Lharen M. Barsabal ; Christopher Jay T. Robidilllo
Philippine Journal of Health Research and Development 2022;26(CAS Issue):68-75
Background:
Gold nanoparticles have been studied extensively for their potential application in the detection of important analytes. Their relative ease of synthesis through numerous procedures makes possible their implementation in a variety of assays. Cysteine (cys), a thiol-containing amino acid implicated in numerous pathologies such as obstructive sleep apnea (OSA), has been routinely detected through expensive fluorometric assay kits.
Objectives:
As such, this study aimed to develop a carbohydrate-based gold nanoparticle colorimetric assay for the convenient and straightforward detection of cys.
Methodology:
Carbohydrate-based gold nanoparticles (c-AuNPs) were synthesized following a microwaveassisted procedure. The as-prepared c-AuNPs were used to detect cys by plotting the ratio of the absorbances of the aggregated and dispersed gold nanoparticles against the concentration of cys.
Results:
The c-AuNP solutions were able to detect cys in the micromolar range, with the glucose-based AuNPs (glc-AuNPs) showing the widest linear range (16.7 μm to 167 μm), and the fructose-based gold nanoparticles (frc-AuNPs) exhibiting the lowest detection limit (9.0 μm) for cys. Aside from being able to detect cys, the c-AuNPs were also responsive to tyr and lys.
Conclusion
This study demonstrates that carbohydrate-based gold nanoparticles prepared following a
microwave-assisted procedure using sugars as reducing agents and capping agents can be used successfully in the detection of cysteine.
Cysteine
;
Carbohydrates
;
Starch


Result Analysis
Print
Save
E-mail