1.Role of antibiotic delivery system targeting bacterial biofilm based on ε-poly- L-lysine and cyclodextrin in treatment of bone and joint infections.
Tiexin LIU ; Junqing LIN ; Xianyou ZHENG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(3):362-369
OBJECTIVE:
To explore the mechanism of antibiotic delivery system targeting bacterial biofilm with linezolid (LZD) based on ε-poly- L-lysine (ε-PLL) and cyclodextrin (CD) (ε-PLL-CD-LZD), aiming to enhance antibiotic bioavailability, effectively penetrate and disrupt biofilm structures, and thereby improve the treatment of bone and joint infections.
METHODS:
ε-PLL-CD-LZD was synthesized via chemical methods. The grafting rate of CD was characterized using nuclear magnetic resonance. In vitro biocompatibility was evaluated through live/dead cell staining after co-culturing with mouse embryonic osteoblast precursor cells (MC3T3-E1), human umbilical vein endothelial cells, and mouse embryonic fibroblast cells (3T3-L1). The biofilm-enrichment capacity of ε-PLL-CD-LZD was assessed using Staphylococcus aureus biofilms through enrichment studies. Its biofilm eradication efficacy was investigated via minimum inhibitory concentration (MIC) determination, scanning electron microscopy, and live/dead bacterial staining. A bone and joint infection model in male Sprague-Dawley rats was established to validate the antibacterial effects of ε-PLL-CD-LZD.
RESULTS:
In ε-PLL-CD-LZD, the average grafting rate of CD reached 9.88%. The cell viability exceeded 90% after co-culturing with three types cells. The strong biofilm enrichment capability was observed with a MIC of 2 mg/L. Scanning electron microscopy observations revealed the effective disruption of biofilm structure, indicating potent biofilm eradication capacity. In vivo rat experiments demonstrated that ε-PLL-CD-LZD significantly reduced bacterial load and infection positivity rate at the lesion site ( P<0.05).
CONCLUSION
The ε-PLL-CD antibiotic delivery system provides a treatment strategy for bone and joint infections with high clinical translational significance. By effectively enhancing antibiotic bioavailability, penetrating, and disrupting biofilms, it demonstrated significant anti-infection effects in animal models.
Biofilms/drug effects*
;
Animals
;
Anti-Bacterial Agents/pharmacology*
;
Polylysine/chemistry*
;
Cyclodextrins/administration & dosage*
;
Humans
;
Linezolid/pharmacology*
;
Staphylococcus aureus/physiology*
;
Rats, Sprague-Dawley
;
Mice
;
Rats
;
Male
;
Drug Delivery Systems
;
Staphylococcal Infections/drug therapy*
;
Microbial Sensitivity Tests
;
Human Umbilical Vein Endothelial Cells
;
Osteoblasts/cytology*
2.Literature review and experience in treatment of multidrug-resistant bacterial infection in operative area after cochlear implantation.
Wenwei LUO ; Peina WU ; Yuanpu LAI ; Yong CUI ; Hongming HUANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(5):453-456
Objective:Multi-drug resistant bacterial infection(MRSA) complications occurring in cochlear implant recipients is rare and of serious consequence. This paper aimed to summarize the treatment experience of a patient with MRSA infection after cochlear implantation. A patient with nasopharyngeal malignant tumor after radiotherapy developed to severe sensorineural deafness. She suffered MRSA infection nine days after cochlear implantation. Since the wound failed to heal after weeks of topical and systemic sensitive antibiotic therapy, the patient underwent surgery for wound debridement. The stimulator-receiver and the electrode of the implant was removed, negative pressure wound therapy was applied, and systemic anti-infection treatment with sensitive antibiotics for weeks, the patients recovered and was discharged from hospital 69 days after infection.
Humans
;
Cochlear Implantation/adverse effects*
;
Female
;
Drug Resistance, Multiple, Bacterial
;
Staphylococcal Infections/therapy*
;
Methicillin-Resistant Staphylococcus aureus
;
Cochlear Implants
;
Anti-Bacterial Agents/therapeutic use*
;
Postoperative Complications
;
Middle Aged
3.Polydopamine-modified phycocyanin nanoparticles with photothermal antimicrobial activity promote skin wound healing in mice.
Chen ZHANG ; Zhi XU ; Xiang LI ; Pengyixiang HE ; Kailin QU ; Qi NING ; Yile JIN ; Surui YANG ; Xu WU
Journal of Southern Medical University 2025;45(9):1959-1966
OBJECTIVES:
To evaluate the photothermal and antibacterial activities of polydopamine-modified phycocyanin nanoparticles (PDA@PC NPs) and their capacity for promoting wound healing.
METHODS:
PDA@PC NPs were synthesized from phycocyanin (C-PC) and dopamine hydrochloride using a one-pot method. The photothermal activity of the nanoparticles was assessed in vitro by 808 nm laser irradiation, their biocompatibility was evaluated using CCK-8 assay, and their photothermal antibacterial activity by plate colony counting. In adult male BALB/c mice, two symmetrical full-thickness skin wounds (1.0 cm ×1.0 cm) were created on both sides of the spine, and 200 μL of Staphylococcus aureus suspension was inoculated into the wounds. The mice were divided into control group, PDA@PC NPs group, and PDA@PC NPs with laser irradiation group, and wound healing rates and histomorphological changes in the wound tissues were evaluated on days 0, 7 and 14 after modeling.
RESULTS:
The synthesized PDA@PC NPs exhibited no obvious cytotoxicity up to a concentration of 500 μg/mL and showed strong photothermal and antibacterial activities in response to 808 nm laser irradiation. In the mouse models, the size of the infected skin wounds showed substantial reduction at 7 and 14 days in PDA@PC NPs group and PDA@PC NPs with laser irradiation group, and the mean wound healing rate was faster in the latter group. HE staining and Masson's trichrome staining revealed extensive granulation tissue formation and collagen deposition on the wound surfaces in both of the treatment groups, and these changes were more obvious in the PDA@PC NPs with laser irradiation group.
CONCLUSIONS
PDA@PC NPs possess excellent photothermal and antibacterial activities and can effectively promote wound healing in mice.
Animals
;
Indoles/chemistry*
;
Wound Healing/drug effects*
;
Mice
;
Mice, Inbred BALB C
;
Male
;
Nanoparticles
;
Polymers/chemistry*
;
Phycocyanin/chemistry*
;
Skin/injuries*
;
Staphylococcus aureus/drug effects*
;
Anti-Bacterial Agents/pharmacology*
4.In Vitro and Animal Studies of Human Natural Killer Cell-Derived Exosomes for the Treatment of Otitis Media.
Zirui ZHAO ; Liqin WANG ; Zhen GUO ; Kanglun JIANG ; Jianghong XU ; Yilai SHU ; Christina Y XU ; Jianning ZHANG ; Yunfeng WANG ; Geng-Lin LI
Neuroscience Bulletin 2025;41(10):1792-1804
Otitis media is an infection of the middle ear mainly caused by bacteria, and current treatments rely heavily on antibiotics. However, the emergence of antibiotic-resistant bacterial strains seriously affects their efficacy. In our study, we found that extracellular vesicles (EVs) derived from human natural killer cells (NKs) inhibit the proliferation of both standard and levofloxacin (LVX)-resistant strains of Staphylococcus aureus in a dose-dependent manner. Moreover, compared to LVX, EVs were more effective at reducing effusion and rescuing hearing thresholds in animal models. For LVX-sensitive strains, EVs were significantly more effective in terms of curative time but not curative rate. For LVX-resistant strains, EVs were significantly more effective in terms of both curative rate and curative time when applied alone or applied jointly with LVX. In summary, we found that NK EVs are highly effective in treating otitis media, providing an alternative approach for treating this common disease.
Killer Cells, Natural/metabolism*
;
Exosomes/metabolism*
;
Animals
;
Humans
;
Otitis Media/therapy*
;
Staphylococcus aureus/drug effects*
;
Disease Models, Animal
;
Anti-Bacterial Agents/pharmacology*
;
Levofloxacin/pharmacology*
5.Defect modification of calcium silicate and its application in oral bacteriostasis and tooth remineralization.
Yuanyuan HU ; Shuyan ZHANG ; Jianhua ZHANG ; Hongrong LUO ; Yunfeng LI ; Jing ZHANG ; Xianchun CHEN
West China Journal of Stomatology 2025;43(5):648-659
OBJECTIVES:
Calcium silicate (CSO) is modified to give it photothermal antibacterial properties. Its application potential in tooth mineralization and oral antibacterial is evaluated.
METHODS:
Based on defect-engineering modification strategy, a series of CSO-T samples (CSO-300, CSO-400, CSO-500, CSO-600) was obtained by introducing oxygen vacancy into CSO through thermal reduction using sodium borohydride. The samples were tested using scanning electron microscopy (SEM), X-ray diffraction, X-ray photoelectron spectroscopy, ultraviolet near-infrared absorption spectroscopy, and infrared thermography. The powder samples with the best photothermal performance and the most suitable material concentration (CSO-500, 500 μg/mL) were selected for subsequent experiments. High resolution transmission electron microscopy was used to analyze the microstructure and morphology of the sample, and MTT assay and Calcein AM/PI live/dead cell staining were used to evaluate the toxicity and compatibility of the sample to human oral keratinocytes. Escherichia coli and Staphylococcus aureus were selected for photothermal antibacterial experiments to evaluate their in vitro antibacterial performance. SEM, energy dispersive spectrometer, and micro Vickers hardness tester were used to evaluate the ability of materials to induce in vitro remineralization of detached teeth.
RESULTS:
Oxygen vacancies changed the crystal type and lattice spacing of CaSiO3, broadened the light-absorption range, and gave it a good photothermal conversion ability in response to near infrared. Invitro experiments showed that the modified CaSiO3 could promote the formation of hydroxyapatite on the tooth surface, thereby promoting the remineralization of teeth and improving the teeth hardness. Moreover, it had photothermal antibacterial properties and no cytotoxicity.
CONCLUSIONS
Defect-modified black calcium silicate has multiple functions, such as promoting tooth remineralization and photothermal bacteriostatic. When combined with the infrared luminescent toothbrush, it can simply and effectively treat tooth enamel erosion and oral bacteriostatic diseases caused by the excessive consumption of carbonated beverages and other daily bad living habits. This combination is expected to achieve the synergic treatment effect of tooth remineralization and oral bacteriostatic through daily cleaning is expected.
Calcium Compounds/pharmacology*
;
Silicates/pharmacology*
;
Humans
;
Staphylococcus aureus/drug effects*
;
Tooth Remineralization
;
Escherichia coli/drug effects*
;
Anti-Bacterial Agents/pharmacology*
;
Keratinocytes/drug effects*
;
Microscopy, Electron, Scanning
6.Establishment and optimization of a genetic manipulation system for Staphylococcus pasteuri.
Tinghao ZHANG ; Ziqi WANG ; Yuxin SONG ; Jinjin WANG ; Feng GUO ; Yongjun ZHANG ; Fuping LU ; Ming LI
Chinese Journal of Biotechnology 2025;41(9):3604-3616
One of the technical bottlenecks limiting the high yield of 1,4-butanediamine is the insufficient tolerance of strains to 1,4-butanediamine. Enhancing the tolerance of strains to 1,4-butanediamine is therefore a primary challenge that needs to be addressed for the construction of strains with high yields of 1,4-butanediamine. Staphylococcus pasteuri 326180 exhibits exceptional tolerance to high-concentration 1,4-butanediamine, serving as both an ideal model for studying the mechanism underlying the 1,4-butanediamine tolerance and a novel host for constructing strains capable of efficiently producing 1,4-butanediamine. However, for both the research on the tolerance mechanism and the modification of chassis strains, gene editing of S. pasteuri needs to be carried out at the molecular level. The research objective of this paper is to establish a genetic manipulation system for S. pasteuri, laying foundation for subsequent studies on tolerance mechanism and the modification of chassis strains. This study systematically optimized the electroporation conditions, including key parameters such as the growth phase of cells, electric field strength, electroporation buffer, and recovery medium, successfully establishing an electroporation method for S. pasteuri. Additionally, we constructed the gene editing plasmid pCpfOA by replacing the resistance expression cassette, optimized the selection markers for gene editing, and finally established a CRISPR/Cpf1-based gene editing technology for S. pasteuri, achieving an editing efficiency of 90%. The genetic manipulation system of S. pasteuri established in this study provides technical support for research into the tolerance mechanism of this bacterium and the genetic modification of chassis strains.
Staphylococcus/drug effects*
;
Gene Editing/methods*
;
Electroporation/methods*
;
Plasmids/genetics*
;
CRISPR-Cas Systems
;
Genetic Engineering/methods*
7.Neutropenic Fever in Lung Cancer: Clinical Aspects Related to Mortality and Antibiotic Failure.
Inês RODRIGUES ; Luísa NASCIMENTO ; Ana Cláudia PIMENTA ; Sara RAIMUNDO ; Bebiana CONDE ; Ana FERNANDES
Chinese Journal of Lung Cancer 2021;24(11):764-769
BACKGROUND:
Lung cancer (LC) is the leading cause of cancer death. Patients treated with chemotherapy are at risk of developing chemotherapy-induced febrile neutropenia (FN), a potentially life-threatening complication. The aims of this study were (1) to characterize FN admissions of patients with LC in a pulmonology department, and (2) to determine associations between patient profiles, first-line antibiotic failure (FLAF) and mortality.
METHODS:
Retrospective observational case-series, based on the analysis of medical records of LC patients that required hospitalization due to chemotherapy-induced FN.
RESULTS:
A total of 42 cases of FN were revised, corresponding to 36 patients, of which 86.1% were male, with a mean age of 66.71±9.83 years. Most patients had a performance status (PS) equal or less than 1, and metastatic disease was present in 40.5% (n=17). Respiratory tract infections accounted for 42.9% (n=18) of FN cases, and multidrug-resistant Staphylococcus aureus was the most isolated agent. The mortality rate was 16.7% (n=7), and the FLAF was 26.2% (n=11). Mortality was associated with a PS≥2 (P=0.011), infection by a Gram-negative agent (P=0.001) and severe anemia (P=0.048). FLAF was associated with longer hospitalizations (P=0.020), PS≥2 (P=0.049), respiratory infections (P=0.024), and infection by a Gram-negative (P=0.003) or multidrug-resistant agent (P=0.014).
CONCLUSIONS
Lower PS, severe anemia, and infections by Gram-negative or multi-resistant agents seem to be associated with worse outcomes in FN patients.
Aged
;
Anti-Bacterial Agents/adverse effects*
;
Female
;
Hospitalization
;
Humans
;
Lung Neoplasms/drug therapy*
;
Male
;
Methicillin-Resistant Staphylococcus aureus
;
Middle Aged
;
Retrospective Studies
8.Characterization of plantaricin IIA-1A5 biosynthesized by Lactobacillus plantarum IIA-1A5 in corn steep liquor based medium
Tuti Rostianti Maulani ; Betty Sri Laksmi Jenie ; Irma Isnafia Arief ; Sukarno Sukarno
Malaysian Journal of Microbiology 2021;17(3):313-320
Aims:
To characterize the plantaricin IIA-1A5 crude extract that biosynthesized by Lactobacillus plantarum IIA-1A5
using corn steep liquor (CSL) based medium.
Methodology and results:
Lactobacillus plantarum IIA-1A5 was grown in several media containing different components including corn steep liquor (CSL), molasses and MRS (de Man Rogosa Sharpe) as control medium for 24 h at 37 °C. Antibacterial activities of the cell-free supernatant were expressed as diameter of inhibition zones observed by paper disc method. The results showed that CSL medium produced cell-free supernatant of L. plantarum IIA-1A5 with significantly higher antibacterial activity againts Staphylococcus aureus ATCC 25923 (9.81 mm), Lactobacillus monocytogenes ATCC 7644 (9.61 mm), Bacillus cereus (8.97 mm) and Escherichia coli ATCC 25922 (9.23 mm) were not significantly different compared to control MRS broth media (9.59 mm). CSL medium added only with 3% yeast extract and Tween 80 produced supernatant which showed similar antibacterial activity either to 10% molasses or control medium (Medium K and B). The CSL medium was considered more efficient and low cost, therefore this medium was selected for production and characterization of plantaricin IIA-1A5 crude extract. Further characterization performed by SDS PAGE analysis showed that crude plantaricin had molecular weight of approximately 9.9 kDa, higher than that produced in control medium (8.0 kDa). However, both plantaricins were categorized under the same class for small bacteriocin (class II). This study also revealed the plantaricin IIA-1A5 produced in CSL medium was stable to heat and pH and not significantly different compared to control MRS broth media. The antibacterial activity of plantaricin IIA-1A5 crude extract against S. aureus ATCC 25923 (10.09 mm) was not significantly different with 1000 ppm sodium benzoate (9.70 mm) and 300 ppm sodium nitrite (9.82 mm).
Conclusion, significance and impact of study
The CSL medium produced cell-free supernatant of L. plantarum IIA 1A5 had significant antibacterial activity characterization againts S. aureus ATCC 25923, L. monocytogenes ATCC 7644, B. cereus and E. coli ATCC 25922. Comparison of the inhibition activity of plantaricin IIA-1A5 crude extract against pathogen with synthetic preservatives indicated that plantaricin IIA-1A5 crude extract have the potency to replace synthetic preservatives. CSL based medium is potential to be used for low-cost plantaricin IIA-1A5 production.
Anti-Bacterial Agents--metabolism
;
Bacteriocins--metabolism
;
Lactobacillus plantarum
;
Microbial Viability--drug effects
;
Staphylococcus aureus
9.Photothermal Effect-based Cytotoxic Ability of Melanin from Shells to Heal Wounds Infected with Drug-resistant Bacteria .
Ya Mei LIU ; Wei Shuai MA ; Yu Xi WEI ; Yuan Hong XU
Biomedical and Environmental Sciences 2020;33(7):471-483
Objective:
Owing to antibiotic abuse and the subsequent development of antibiotic resistance, bacterial infection has become one of the most persistent unresolved problems. New antibacterial agents, especially those that are environmental-friendly, are urgently needed.
Methods:
Melanin extracted by filtration centrifugation and acid and proteolytic hydrolysis was characterized using UV, FTIR, TEM, and XPS. Photothermal conversion was calculated, and the bacteriostatic effects, and , were assessed by plate counting and ratios (%) of wound areas.
Results:
Natural melanin hydrolyzed by trypsin had good photothermal conversion effects, which resulted in superior bacteriostatic activities. The extracted melanin along with laser NIR irradiation at 808 nm promoted the healing of wounds infected by drug-resistant bacteria and was biocompatible according to toxicity tests and .
Conclusion
The present findings indicated a safe and efficient method of developing natural antibacterial agents.
Animal Shells
;
chemistry
;
Animals
;
Anti-Bacterial Agents
;
pharmacology
;
Escherichia coli
;
drug effects
;
radiation effects
;
Escherichia coli Infections
;
drug therapy
;
Melanins
;
pharmacology
;
Mytilus edulis
;
chemistry
;
Photochemical Processes
;
Rats
;
Rats, Sprague-Dawley
;
Staphylococcal Infections
;
drug therapy
;
Staphylococcus aureus
;
drug effects
;
radiation effects
;
Wound Healing
10.A new antimicrobial isobenzoisofuran compound from Cassia pumila.
Ling-Min LIAO ; Qian GAO ; Yin-Ke LI ; Jing LI ; Xin LIU ; Xue-Mei LI ; Guang-Yu YANG ; Yan-Qing YE ; Qiu-Fen HU ; Jian-Gang LI ; Miao DONG
China Journal of Chinese Materia Medica 2020;45(4):896-898
A new isobenzoisofuran(1) has been isolated from the whole plant of Cassia pumila using various chromatographic techniques, including silica gel, Sephadex, MCI-gel resin, and RP-HPLC, and its structure was determined as 9-(2-hydroxyethyl)-2,2-dimethyl-2H-furo[3,4-g]chromen-6(8H)-one. This compound was also evaluated for its antibacterial activity. The results showed that it had prominent antibacterial activity with MIC_(90) value of(45.2±4.2) μg·mL~(-1) for methicillin resistant Staphylococcus aureus(MRSA) strain. This value was closed to that of levofloxacin [with MIC_(90) value(48.5±4.3) μg·mL~(-1)].
Anti-Bacterial Agents/pharmacology*
;
Benzofurans/pharmacology*
;
Cassia/chemistry*
;
Levofloxacin
;
Methicillin-Resistant Staphylococcus aureus/drug effects*
;
Microbial Sensitivity Tests
;
Phytochemicals/pharmacology*
;
Plants, Medicinal/chemistry*


Result Analysis
Print
Save
E-mail