1.Effects of Saccharomyces cerevisiae chassis cells with different squalene content on triterpenoid synthesis.
Feng ZHANG ; Kang-Xin HOU ; Yue ZHANG ; Hong-Ping HOU ; Yue ZHANG ; Chao-Yue LIU ; Xue-Mi HAO ; Jia LIU ; Cai-Xia WANG
China Journal of Chinese Materia Medica 2025;50(8):2130-2136
Many triterpenoid compounds have been successfully heterologously synthesized in Saccharomyces cerevisiae. To increase the yield of triterpenoids, various metabolic engineering strategies have been developed. One commonly applied strategy is to enhance the supply of precursors, which has been widely used by researchers. Squalene, as a precursor to triterpenoid biosynthesis, plays a crucial role in the synthesis of these compounds. This study primarily investigates the effect of different squalene levels in chassis strains on the synthesis of triterpenoids(oleanolic acid and ursolic acid), and the underlying mechanisms are further explored using real-time quantitative PCR(qPCR) analysis. The results demonstrate that the chassis strain CB-9-5, which produces high levels of squalene, inhibits the synthesis of oleanolic acid and ursolic acid. In contrast, chassis strains with moderate to low squalene production, such as Y8-1 and CNPK, are more conducive to the synthesis of oleanolic acid and ursolic acid. The qPCR analysis reveals that the expression levels of ERG1, βAS, and CrCYP716A154 in the oleanolic acid-producing strain CB-OA are significantly lower than those in the control strains C-OA and Y-OA, suggesting that high squalene production in the chassis strains suppresses the transcription of certain genes, leading to a reduced yield of triterpenoids. Our findings indicate that when constructing S. cerevisiae strains for triterpenoid production, chassis strains with high squalene content may suppress the expression of certain genes, ultimately lowering their production, whereas chassis strains with moderate squalene levels are more favorable for triterpenoid biosynthesis.
Squalene/analysis*
;
Saccharomyces cerevisiae/genetics*
;
Triterpenes/metabolism*
;
Metabolic Engineering
;
Oleanolic Acid/biosynthesis*
;
Ursolic Acid
2.Cloning and sequence analysis on cDNA of squalene epoxidase gene in Eleutherococcus senticosus.
Zhaobin XING ; Lei CAO ; Long CHEN ; Shan HE ; Baocai LI ; Jinli ZHU
China Journal of Chinese Materia Medica 2012;37(2):172-175
OBJECTIVETo clone and sequence the cDNA of squalene epoxidase gene in Eleutherococcus senticosus.
METHODTotal RNA of E. senticosus was extracted by the improved isothiocyanate method and reverse transcripted into cDNA. The primers were designed depending on the reported SE cDNA sequences of Panax ginseng. The SE cDNAs in E. senticosus was amplified using RT-PCR strategy.
RESULTSequencing results showed two different cDNA fragments (SE1, SE2) with 1665, 1629 bp each ORF which encoded 554,542 amino acids, respectively. The identities of nucleotides and amino acids between SE1, SE2 were 91.49%, 92.55%. SE1, SE2 had the highest amino acids similarity to the SE1 of P. notoginseng, 93.45%, 94.87% respectively. SE1, SE2 both had a FAD binding domain. The deduced speculated amino acids of SE1, SE2 each had 2,4 membrane-spanning helices.
CONCLUSIONThe two SE sequences in E. senticosus were firstly separated and reported, which has made foundation for E. senticosus secondary metabolite engineering researches.
Amino Acid Sequence ; Cloning, Molecular ; DNA, Complementary ; chemistry ; genetics ; Eleutherococcus ; enzymology ; genetics ; Isoenzymes ; classification ; genetics ; Molecular Sequence Data ; Phylogeny ; Plant Proteins ; genetics ; Reverse Transcriptase Polymerase Chain Reaction ; Sequence Analysis, DNA ; Sequence Homology, Amino Acid ; Squalene Monooxygenase ; classification ; genetics
3.Researches on influence of squalene synthase gene polymorphism on catalytic efficiency of its encode enzyme in Glycyrrhiza uralensis.
Ying LIU ; Ning ZHANG ; Xue-Yong WANG ; Chun-Sheng LIU ; Hong-Hao CHEN ; Hao WEN
China Journal of Chinese Materia Medica 2012;37(24):3777-3783
OBJECTIVETo analyse the polymorphism of squalene synthase gene and reveal the influence of squalene synthase (SQS) gene polymorphism on the catalytic efficiency of its encode enzyme in Glycyrrhiza uralensi.
METHODThe total RNA was extracted. PCR was used to amplify the coding sequences of squalene synthase gene, which were sequenced and analysed. The expression vectors containing different SQS gene sequences, including SQS1C, SQS1F, SQS2A, SQS2B, were constructed and transformed into Escherichia coli BL21. The fusion protein was induced to express by IPTG, then was isolated, purified and used to carry out the enzymatic reaction in vitro. GC-MS was used to analyse the production.
RESULTThere were three kinds of gene polymorphism existing in SQS1 gene of G. uralensis, including single nucleotide polymorphism (SNPs), insertion/deletion length polymorphism (InDels) and level of amino acid, the proportion of conservative replace of SQS1 was 53.94%, and there were 2 mutational sites in structural domains. The proportion of conservative replace of SQS2 was 60%, and there was 1 mutational site in structural domains. The production squalene could be detected by GC-MS in all the 4 kinds of enzymatic reactions. The capacity of accumulating squalene of SQS1F was higher than other SQS genes.
CONCLUSIONThe polymorphism of SQS gene was quite abundant in G. uralensis, which maybe the molecular foundation of the formation of high-quality liquorice.
Amino Acid Substitution ; Biocatalysis ; Cloning, Molecular ; DNA, Complementary ; chemistry ; genetics ; Electrophoresis, Polyacrylamide Gel ; Escherichia coli ; genetics ; Farnesyl-Diphosphate Farnesyltransferase ; genetics ; metabolism ; Gas Chromatography-Mass Spectrometry ; Glycyrrhiza uralensis ; enzymology ; genetics ; INDEL Mutation ; Isoenzymes ; genetics ; metabolism ; Molecular Sequence Data ; Plant Proteins ; genetics ; metabolism ; Polymorphism, Genetic ; Polymorphism, Single Nucleotide ; Recombinant Proteins ; metabolism ; Sequence Analysis, DNA ; Squalene ; metabolism
4.Effect of endophytic fungi on expression amount of key enzyme genes in saponins biosynthesis and Eleutherococcus senticosus saponins content.
Zhaobin XING ; Yuehong LONG ; Fengyun LAO ; Shan HE ; Nengsong LIANG ; Baocai LI
China Journal of Chinese Materia Medica 2012;37(14):2041-2045
OBJECTIVETo analyze the effect of endophytic fungi on expression amount of key enzyme genes SS (squalene synthase gene), SE (squalene epoxidase gene) and bAS (beta-amyrin synthase gene) in saponin biosynthesis and saponins content in Eleutherococcus senticosus.
METHODWound method was used for back meeting the endophytic fungi to E. senticosus. With GAPDH as internal control gene, the expression of key enzyme genes was detected by real time PCR method. E. senticosus saponins content was measured by spectrophotometry method.
RESULTWhen wound method back meeting P116-1a and P116-1b after 30 d, the expression content of SS improved significantly (P < 0.05), however the back meeting of P109-4 and P312-1 didnt change the expression of SS. After that SS expression showed reduction-equality-reduction varying trend. Thirty days after back meeting P312-1, the expression content of SE improved significantly (P < 0.05). Ninty days after back meeting P116-1b and P312-1, the expression content of SE improved significantly to 130%,161%, respectively (P < 0.05). After 120 d, back meeting four endophytic fungi, the expression of SE were significantly higher than the control (P < 0.05). Back meeting four endophytic fungi form 60 d to 120 d, the expression of bAS was significantly higher than the control (P < 0.05). The back meeting four endophytic fungi improved E. senticosus saponins content significantly (P < 0.05).
CONCLUSIONEndophytic fungi P116-1a, P116-1b, P1094 and P312-1 significantly effected the expression of key enzyme genes SS, SE and bAS and then affected E. senticosus saponins content. Among the genes, bAS was key target gene.
Eleutherococcus ; chemistry ; metabolism ; microbiology ; Endophytes ; physiology ; Farnesyl-Diphosphate Farnesyltransferase ; genetics ; Fungi ; physiology ; Gene Expression Regulation, Enzymologic ; Gene Expression Regulation, Plant ; Intramolecular Transferases ; genetics ; Saponins ; analysis ; biosynthesis ; Squalene Monooxygenase ; genetics

Result Analysis
Print
Save
E-mail