1.Analysis of interaction between intracellular spermine and transient receptor potential canonical 4 channel: multiple candidate sites of negatively charged amino acids for the inward rectification of transient receptor potential canonical 4
Jinsung KIM ; Sang Hui MOON ; Taewook KIM ; Juyeon KO ; Young Keul JEON ; Young Cheul SHIN ; Ju Hong JEON ; Insuk SO
The Korean Journal of Physiology and Pharmacology 2020;24(1):101-110
Transient receptor potential canonical 4 (TRPC4) channel is a nonselective calcium-permeable cation channels. In intestinal smooth muscle cells, TRPC4 currents contribute more than 80% to muscarinic cationic current (mIcat). With its inward-rectifying current-voltage relationship and high calcium permeability, TRPC4 channels permit calcium influx once the channel is opened by muscarinic receptor stimulation. Polyamines are known to inhibit nonselective cation channels that mediate the generation of mIcat. Moreover, it is reported that TRPC4 channels are blocked by the intracellular spermine through electrostatic interaction with glutamate residues (E728, E729). Here, we investigated the correlation between the magnitude of channel inactivation by spermine and the magnitude of channel conductance. We also found additional spermine binding sites in TRPC4. We evaluated channel activity with electrophysiological recordings and revalidated structural significance based on Cryo-EM structure, which was resolved recently. We found that there is no correlation between magnitude of inhibitory action of spermine and magnitude of maximum current of the channel. In intracellular region, TRPC4 attracts spermine at channel periphery by reducing access resistance, and acidic residues contribute to blocking action of intracellular spermine; channel periphery, E649; cytosolic space, D629, D649, and E687.
Amino Acids
;
Binding Sites
;
Calcium
;
Cytosol
;
Glutamic Acid
;
Myocytes, Smooth Muscle
;
Permeability
;
Polyamines
;
Receptors, Muscarinic
;
Spermine
;
Transient Receptor Potential Channels
2.Mitochondrial Quality Control in the Heart: New Drug Targets for Cardiovascular Disease
Chang Myung OH ; Dongryeol RYU ; Sungsoo CHO ; Yangsoo JANG
Korean Circulation Journal 2020;50(5):395-405
Despite considerable efforts to prevent and treat cardiovascular disease (CVD), it has become the leading cause of death worldwide. Cardiac mitochondria are crucial cell organelles responsible for creating energy-rich ATP and mitochondrial dysfunction is the root cause for developing heart failure. Therefore, maintenance of mitochondrial quality control (MQC) is an essential process for cardiovascular homeostasis and cardiac health. In this review, we describe the major mechanisms of MQC system, such as mitochondrial unfolded protein response and mitophagy. Moreover, we describe the results of MQC failure in cardiac mitochondria. Furthermore, we discuss the prospects of 2 drug candidates, urolithin A and spermidine, for restoring mitochondrial homeostasis to treat CVD.
Adenosine Triphosphate
;
Cardiovascular Diseases
;
Cause of Death
;
Heart Failure
;
Heart
;
Homeostasis
;
Mitochondria
;
Mitochondrial Degradation
;
Organelles
;
Quality Control
;
Spermidine
;
Unfolded Protein Response
3.Spermidine Protects against Oxidative Stress in Inflammation Models Using Macrophages and Zebrafish.
Jin Woo JEONG ; Hee Jae CHA ; Min Ho HAN ; Su Jung HWANG ; Dae Sung LEE ; Jong Su YOO ; Il Whan CHOI ; Suhkmann KIM ; Heui Soo KIM ; Gi Young KIM ; Su Hyun HONG ; Cheol PARK ; Hyo Jong LEE ; Yung Hyun CHOI
Biomolecules & Therapeutics 2018;26(2):146-156
Spermidine is a naturally occurring polyamine compound that has recently emerged with anti-aging properties and suppresses inflammation and oxidation. However, its mechanisms of action on anti-inflammatory and antioxidant effects have not been fully elucidated. In this study, the potential of spermidine for reducing pro-inflammatory and oxidative effects in lipopolysaccharide (LPS)-stimulated macrophages and zebrafish was explored. Our data indicate that spermidine significantly inhibited the production of pro-inflammatory mediators such as nitric oxide (NO) and prostaglandin E2 (PGE2), and cytokines including tumor necrosis factor-α and interleukin-1β in RAW 264.7 macrophages without any significant cytotoxicity. The protective effects of spermidine accompanied by a marked suppression in their regulatory gene expression at the transcription levels. Spermidine also attenuated the nuclear translocation of NF-κB p65 subunit and reduced LPS-induced intracellular accumulation of reactive oxygen species (ROS) in RAW 264.7 macrophages. Moreover, spermidine prevented the LPS-induced NO production and ROS accumulation in zebrafish larvae and was found to be associated with a diminished recruitment of neutrophils and macrophages. Although more work is needed to fully understand the critical role of spermidine on the inhibition of inflammation-associated migration of immune cells, our findings clearly demonstrate that spermidine may be a potential therapeutic intervention for the treatment of inflammatory and oxidative disorders.
Antioxidants
;
Cytokines
;
Dinoprostone
;
Genes, Regulator
;
Inflammation*
;
Larva
;
Macrophages*
;
Necrosis
;
Neutrophils
;
Nitric Oxide
;
Oxidative Stress*
;
Reactive Oxygen Species
;
Spermidine*
;
Zebrafish*
4.Exogenous spermidine ameliorates tubular necrosis during cisplatin nephrotoxicity.
Anatomy & Cell Biology 2018;51(3):189-199
The hallmark of cisplatin-induced acute kidney injury is the necrotic cell death in the kidney proximal tubules. However, an effective approach to limit cisplatin nephrotoxicity remains unknown. Spermidine is a polyamine that protects against oxidative stress and necrosis in aged yeasts, and the present study found that exogenous spermidine markedly attenuated tubular necrosis and kidney dysfunction, but not apoptosis, during cisplatin nephrotoxicity. In addition, exogenous spermidine potently inhibited oxidative/nitrative DNA damage, poly(ADP-ribose) polymerase 1 (PARP1) activation and ATP depletion after cisplatin injection. Conversely, inhibition of ornithine decarboxylase (ODC) via siRNA transfection in vivo significantly increased DNA damage, PARP1 activation and ATP depletion, resulting in acceleration of tubular necrosis and kidney dysfunction. Finally, exogenous spermidine removed severe cisplatin injury induced by ODC inhibition. In conclusion, these data suggest that spermidine protects kidneys against cisplatin injury through DNA damage and tubular necrosis, and this finding provides a novel target to prevent acute kidney injury including nephrotoxicity.
Acceleration
;
Acute Kidney Injury
;
Adenosine Triphosphate
;
Apoptosis
;
Cell Death
;
Cisplatin*
;
DNA Damage
;
Kidney
;
Lipid Peroxidation
;
Necrosis*
;
Ornithine Decarboxylase
;
Oxidative Stress
;
Poly(ADP-ribose) Polymerases
;
RNA, Small Interfering
;
Spermidine*
;
Transfection
;
Yeasts
5.Spermidine is protective against kidney ischemia and reperfusion injury through inhibiting DNA nitration and PARP1 activation.
Anatomy & Cell Biology 2017;50(3):200-206
Kidney ischemia and reperfusion injury (IRI) is associated with a high mortality rate, which is attributed to tubular oxidative and nitrative stresses; however, an effective approach to limit IRI remains elusive. Spermidine, a naturally occurring polyamine, protects yeast cells against aging through the inhibition of oxidative stress and necrosis. In the present study, spermidine supplementation markedly attenuated histological damage and kidney dysfunction during IRI. In addition, exogenous spermidine potently inhibited poly(ADP-ribose) polymerase 1 (PARP1) activation and DNA nitrative/oxidative stress following IRI. Conversely, inhibition of ornithine decarboxylase (ODC) via siRNA transfection in vivo significantly enhanced DNA nitration, PARP1 activation, and functional damage during IRI. Finally, in ODC knockdown kidneys, PARP1 inhibition attenuated histological and functional damage induced by IRI, but not DNA nitrative stress. In conclusion, these data suggest that spermidine protects kidneys against IRI through blocking DNA nitration and PARP1 activation and this finding provides a novel target for prevention of acute kidney injury including IRI.
Acute Kidney Injury
;
Aging
;
DNA*
;
Ischemia*
;
Kidney*
;
Mortality
;
Necrosis
;
Ornithine Decarboxylase
;
Oxidative Stress
;
Poly(ADP-ribose) Polymerases
;
Reperfusion Injury*
;
Reperfusion*
;
RNA, Small Interfering
;
Spermidine*
;
Transfection
;
Yeasts
6.Identification of Wild Yeast Strains and Analysis of Their beta-Glucan and Glutathione Levels for Use in Makgeolli Brewing.
Sun Hee KANG ; Hye Ryun KIM ; Jae Ho KIM ; Byung Hak AHN ; Tae Wan KIM ; Jang Eun LEE
Mycobiology 2014;42(4):361-367
Makgeolli, also known as Takju, is a non-filtered traditional Korean alcoholic beverage that contains various floating matter, including yeast cells, which contributes to its high physiological functionality. In the present study, we assessed the levels of beta-glucan and glutathione in various yeast strains isolated from traditional Korean Nuruk and selected a beta-glucan- and glutathione-rich yeast strain to add value to Makgeolli by enhancing its physiological functionality through increased levels of these compounds. Yeast beta-glucan levels ranged from 6.26% to 32.69% (dry basis) and were strongly species-dependent. Dried Saccharomyces cerevisiae isolated from Nuruk contained 25.53 microg/mg glutathione, 0.70 microg/mg oxidized glutathione, and 11.69 microg/g and 47.85 microg/g spermidine and L-ornithine monohydrochloride, respectively. To produce functional Makgeolli, a beta-glucan- and glutathione-rich yeast strain was selected in a screening analysis. Makgeolli fermented with the selected yeast strain contained higher beta-glucan and glutathione levels than commercial Makgeolli. Using the selected yeast strain to produce Makgeolli with high beta-glucan and glutathione content may enable the production of functional Makgeolli.
Alcoholic Beverages
;
Glutathione Disulfide
;
Glutathione*
;
Mass Screening
;
Saccharomyces cerevisiae
;
Spermidine
;
Yeasts*
7.Polyamines and Their Metabolites as Diagnostic Markers of Human Diseases.
Myung Hee PARK ; Kazuei IGARASHI
Biomolecules & Therapeutics 2013;21(1):1-9
Polyamines, putrescine, spermidine and spermine, are ubiquitous in living cells and are essential for eukaryotic cell growth. These polycations interact with negatively charged molecules such as DNA, RNA, acidic proteins and phospholipids and modulate various cellular functions including macromolecular synthesis. Dysregulation of the polyamine pathway leads to pathological conditions including cancer, inflammation, stroke, renal failure and diabetes. Increase in polyamines and polyamine synthesis enzymes is often associated with tumor growth, and urinary and plasma contents of polyamines and their metabolites have been investigated as diagnostic markers for cancers. Of these, diacetylated derivatives of spermidine and spermine are elevated in the urine of cancer patients and present potential markers for early detection. Enhanced catabolism of cellular polyamines by polyamine oxidases (PAO), spermine oxidase (SMO) or acetylpolyamine oxidase (AcPAO), increases cellular oxidative stress and generates hydrogen peroxide and a reactive toxic metabolite, acrolein, which covalently incorporates into lysine residues of cellular proteins. Levels of protein-conjuagated acrolein (PC-Acro) and polyamine oxidizing enzymes were increased in the locus of brain infarction and in plasma in a mouse model of stroke and also in the plasma of stroke patients. When the combined measurements of PC-Acro, interleukin 6 (IL-6), and C-reactive protein (CRP) were evaluated, even silent brain infarction (SBI) was detected with high sensitivity and specificity. Considering that there are no reliable biochemical markers for early stage of stroke, PC-Acro and PAOs present promising markers. Thus the polyamine metabolites in plasma or urine provide useful tools in early diagnosis of cancer and stroke.
Acrolein
;
Animals
;
Biomarkers
;
Brain Infarction
;
C-Reactive Protein
;
Diacetyl
;
DNA
;
Early Detection of Cancer
;
Eukaryotic Cells
;
Humans*
;
Hydrogen Peroxide
;
Inflammation
;
Interleukin-6
;
Lysine
;
Metabolism
;
Mice
;
Oxidative Stress
;
Oxidoreductases
;
Phospholipids
;
Plasma
;
Polyamines*
;
Putrescine
;
Renal Insufficiency
;
RNA
;
Sensitivity and Specificity
;
Spermidine
;
Spermine
;
Stroke
8.Cholesterol conjugated spermine as a delivery modality of antisense oligonucleotide.
Yoon Kyung IM ; Myung Su KIM ; Hoon YOO
International Journal of Oral Biology 2013;38(4):155-160
The major issue in the development of nucleic acid based therapeutics is the inefficient delivery of these agents into cells. We prepared cholesterol conjugated spermine and evaluated its usefulness as a delivery modality for antisense oligonucleotides in HeLa-Luc cells. A 2'-O-methyl antisense oligonucleotide sequence, designed to correct splicing at an aberrant intron inserted into a normal luciferase reporter gene, was used for complex formation with cholesterol conjugated spermine. Effective delivery of this antisense agent into nucleus would results in the expression of a luciferasereporter gene product. The cholesterol-spermine formed stable complexes with the antisense oligonucleotide and showed modest delivery activity. Furthermore, this delivery activity was maintained even in the presence of serum proteins, mimicking in vivo conditions. Cholesterol-spermine thus has potential as a delivery system for antisense oligonucleotides into cells.
Blood Proteins
;
Cholesterol*
;
Genes, Reporter
;
Introns
;
Luciferases
;
Oligonucleotides, Antisense
;
Spermine*
9.Extracellular Ca(2+) influx and NO generation are inhibited by small interference RNA targeting extracellular Ca(2+)-sensing receptor in human umbilical vein endothelial cells.
Xiao LIANG ; Xiao-Lin LUO ; Hua ZHONG ; Qing-Hua HU ; Fang HE
Acta Physiologica Sinica 2012;64(3):289-295
To investigate the effect of Ca(2+)-sensing receptor (CaR) on Spermine-induced extracellular Ca(2+) influx and NO generation in human umbilical vein endothelial cells (HUVEC), the small interference RNA (siRNA) specifically targeting CaR gene was designed, synthesized and transfected into HUVEC according to the cDNA sequence of human CaR gene in GenBank. The transfection efficiency and the interference efficiency of CaR protein were determined by laser scanning confocal microscopy and Western blot, respectively. Intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured by Fura-2/AM loading. The production of NO and the activity of endothelial nitric oxide synthase (eNOS) were determined by the DAF-FM diacetate (DAF-FM DA). Western blot results demonstrated that siRNA targeting the CaR specifically decreased the expression of CaR protein in CaR siRNA group 48 h after transfection (P < 0.05). At the same time, the Spermine-induced [Ca(2+)](i), eNOS activity and NO generation were also significantly reduced (P < 0.05) in CaR siRNA group compared with those in the untransfected or negative siRNA transfected group. In conclusion, the present study suggests that the CaR plays an important role in the Spermine-evoked process of extracellular Ca(2+) influx and NO generation in HUVEC.
Calcium
;
physiology
;
Cells, Cultured
;
Human Umbilical Vein Endothelial Cells
;
physiology
;
Humans
;
Nitric Oxide
;
physiology
;
Nitric Oxide Synthase Type III
;
physiology
;
RNA, Small Interfering
;
Receptors, Calcium-Sensing
;
genetics
;
physiology
;
Spermine
;
pharmacology
;
Transfection
10.Dynamin-mediated endocytic process contributes to neuronal nitric oxide synthase-mediated regulation of cardiac contraction.
Kai LIU ; Jun LI ; Yi-Han CHEN
Acta Physiologica Sinica 2011;63(3):211-218
Nitric oxide synthases (NOSs) play complex roles in the regulation of cardiac excitation contraction coupling under basal and stressed conditions. Herein, using the recording approach for intracellular calcium transient and synchronous myocyte contraction, the potential mechanism for NOSs-mediated cardiomyocyte contraction was explored. We found that selective inhibition of neuronal NOS (nNOS) with 100 µmol/L spermidine markedly enhanced the cardiomyocyte twitch [control: (10.5 ± 0.21)%; nNOS inhibition: (12.4 ± 0.18)%] and calcium transient [control: (0.27 ± 0.03)%; nNOS inhibition: (0.42 ± 0.01)%], but slowed the relengthening of twitch [control: (25.2 ± 1.3) ms; nNOS inhibition: (53 ± 2.8) ms] and the calcium transient decay [control: (129 ± 4.3) ms; nNOS inhibition: (176 ± 7.1) ms], which was similar to that by dynamin inhibition with 30 µmol/L dynasore. The nNOS inhibition- or dynasore-mediated effects could be rescued by an NO donor, S-Nitroso-N-acetylpenicillamine (SNAP). Our data suggest that the selective nNOS-mediated regulation of cardiac contractile activity may partly involve the dynamin-mediated endocytic mechanism.
Animals
;
Biological Transport
;
Calcium Signaling
;
Dynamins
;
antagonists & inhibitors
;
physiology
;
Endocytosis
;
physiology
;
Female
;
Hydrazones
;
pharmacology
;
Male
;
Myocardial Contraction
;
physiology
;
Nitric Oxide Synthase Type I
;
physiology
;
Rats
;
Rats, Sprague-Dawley
;
Spermidine
;
pharmacology
;
Transport Vesicles
;
physiology

Result Analysis
Print
Save
E-mail