1.A head direction cell model based on a spiking neural network with landmark-free calibration.
Naigong YU ; Jingsen HUANG ; Ke LIN ; Zhiwen ZHANG
Journal of Biomedical Engineering 2025;42(5):970-976
In animal navigation, head direction is encoded by head direction cells within the olfactory-hippocampal structures of the brain. Even in darkness or unfamiliar environments, animals can estimate their head direction by integrating self-motion cues, though this process accumulates errors over time and undermines navigational accuracy. Traditional strategies rely on visual input to correct head direction, but visual scenes combined with self-motion information offer only partially accurate estimates. This study proposed an innovative calibration mechanism that dynamically adjusts the association between visual scenes and head direction based on the historical firing rates of head direction cells, without relying on specific landmarks. It also introduced a method to fine-tune error correction by modulating the strength of self-motion input to control the movement speed of the head direction cell activity bump. Experimental results showed that this approach effectively reduced the accumulation of self-motion-related errors and significantly enhanced the accuracy and robustness of the navigation system. These findings offer a new perspective for biologically inspired robotic navigation systems and underscore the potential of neural mechanisms in enabling efficient and reliable autonomous navigation.
Animals
;
Neural Networks, Computer
;
Calibration
;
Spatial Navigation/physiology*
;
Head Movements/physiology*
;
Neurons/physiology*
;
Models, Neurological
;
Head/physiology*
;
Action Potentials/physiology*
2.Neural Correlates of Spatial Navigation in Primate Hippocampus.
Neuroscience Bulletin 2023;39(2):315-327
The hippocampus has been extensively implicated in spatial navigation in rodents and more recently in bats. Numerous studies have revealed that various kinds of spatial information are encoded across hippocampal regions. In contrast, investigations of spatial behavioral correlates in the primate hippocampus are scarce and have been mostly limited to head-restrained subjects during virtual navigation. However, recent advances made in freely-moving primates suggest marked differences in spatial representations from rodents, albeit some similarities. Here, we review empirical studies examining the neural correlates of spatial navigation in the primate (including human) hippocampus at the levels of local field potentials and single units. The lower frequency theta oscillations are often intermittent. Single neuron responses are highly mixed and task-dependent. We also discuss neuronal selectivity in the eye and head coordinates. Finally, we propose that future studies should focus on investigating both intrinsic and extrinsic population activity and examining spatial coding properties in large-scale hippocampal-neocortical networks across tasks.
Animals
;
Humans
;
Spatial Navigation/physiology*
;
Hippocampus/physiology*
;
Primates
;
Neurons/physiology*
;
Theta Rhythm/physiology*

Result Analysis
Print
Save
E-mail