1.AI-ECG Supported Decision-Making for Coronary Angiography in Acute Chest Pain: The QCG-AID Study
Jiesuck PARK ; Joonghee KIM ; Soyeon AHN ; Youngjin CHO ; Yeonyee E. YOON
Journal of Korean Medical Science 2025;40(12):e105-
This pilot study evaluates an artificial intelligence (AI)-assisted electrocardiography (ECG) analysis system, QCG, to enhance urgent coronary angiography (CAG) decision-making for acute chest pain in the emergency department (ED). We retrospectively analyzed 300 ED cases, categorized as non-coronary chest pain (Group 1), acute coronary syndrome (ACS) without occlusive coronary artery disease (CAD) (Group 2), and ACS with occlusive CAD (Group 3). Six clinicians made urgent CAG decision using a conventional approach (clinical data and ECG) and a QCG-assisted approach (including QCG scores). The QCG-assisted approach improved correct CAG decisions in Group 2 (36.0% vs. 45.3%, P = 0.003) and Group 3 (85.3% vs. 90.0%, P = 0.017), with minimal impact in Group 1 (92.7% vs. 95.0%, P = 0.125). Diagnostic accuracy for ACS improved from 77% to 81% with QCG assistance and reached 82% with QCG alone, supporting AI's potential to enhance urgent CAG decisionmaking for ED chest pain cases.
2.AI-ECG Supported Decision-Making for Coronary Angiography in Acute Chest Pain: The QCG-AID Study
Jiesuck PARK ; Joonghee KIM ; Soyeon AHN ; Youngjin CHO ; Yeonyee E. YOON
Journal of Korean Medical Science 2025;40(12):e105-
This pilot study evaluates an artificial intelligence (AI)-assisted electrocardiography (ECG) analysis system, QCG, to enhance urgent coronary angiography (CAG) decision-making for acute chest pain in the emergency department (ED). We retrospectively analyzed 300 ED cases, categorized as non-coronary chest pain (Group 1), acute coronary syndrome (ACS) without occlusive coronary artery disease (CAD) (Group 2), and ACS with occlusive CAD (Group 3). Six clinicians made urgent CAG decision using a conventional approach (clinical data and ECG) and a QCG-assisted approach (including QCG scores). The QCG-assisted approach improved correct CAG decisions in Group 2 (36.0% vs. 45.3%, P = 0.003) and Group 3 (85.3% vs. 90.0%, P = 0.017), with minimal impact in Group 1 (92.7% vs. 95.0%, P = 0.125). Diagnostic accuracy for ACS improved from 77% to 81% with QCG assistance and reached 82% with QCG alone, supporting AI's potential to enhance urgent CAG decisionmaking for ED chest pain cases.
3.Establishing Regional Aβ Cutoffs andExploring Subgroup Prevalence Across Cognitive Stages Using BeauBrain Amylo®
Seongbeom PARK ; Kyoungmin KIM ; Soyeon YOON ; Seongmi KIM ; Jehyun AHN ; Kyoung Yoon LIM ; Hyemin JANG ; Duk L. NA ; Hee Jin KIM ; Seung Hwan MOON ; Jun Pyo KIM ; Sang Won SEO ; Jaeho KIM ; Kichang KWAK
Dementia and Neurocognitive Disorders 2025;24(2):135-146
Background:
and Purpose: Amyloid-beta (Aβ) plaques are key in Alzheimer’s disease (AD), with Aβ positron emission tomography imaging enabling non-invasive quantification.To address regional Aβ deposition, we developed regional Centiloid scales (rdcCL) and commercialized them through the computed tomography (CT)-based BeauBrain Amylo platform, eliminating the need for three-dimensional T1 magnetic resonance imaging (MRI).
Objective:
We aimed to establish robust regional Aβ cutoffs using the commercialized BeauBrain Amylo platform and to explore the prevalence of subgroups defined by global, regional, and striatal Aβ cutoffs across cognitive stages.
Methods:
We included 2,428 individuals recruited from the Korea-Registries to Overcome Dementia and Accelerate Dementia Research project. We calculated regional Aβ cutoffs using Gaussian Mixture Modeling. Participants were classified into subgroups based on global, regional, and striatal Aβ positivity across cognitive stages (cognitively unimpaired [CU], mild cognitive impairment, and dementia of the Alzheimer’s type).
Results:
MRI-based and CT-based global Aβ cutoffs were highly comparable and consistent with previously reported Centiloid values. Regional cutoffs revealed both similarities and differences between MRI- and CT-based methods, reflecting modality-specific segmentation processes. Subgroups such as global(−)regional(+) were more frequent in non-dementia stages, while global(+)striatal(−) was primarily observed in CU individuals.
Conclusions
Our study established robust regional Aβ cutoffs using a CT-based rdcCL method and demonstrated its clinical utility in classifying amyloid subgroups across cognitive stages. These findings highlight the importance of regional Aβ quantification in understanding amyloid pathology and its implications for biomarker-guided diagnosis and treatment in AD.
4.Establishing Regional Aβ Cutoffs andExploring Subgroup Prevalence Across Cognitive Stages Using BeauBrain Amylo®
Seongbeom PARK ; Kyoungmin KIM ; Soyeon YOON ; Seongmi KIM ; Jehyun AHN ; Kyoung Yoon LIM ; Hyemin JANG ; Duk L. NA ; Hee Jin KIM ; Seung Hwan MOON ; Jun Pyo KIM ; Sang Won SEO ; Jaeho KIM ; Kichang KWAK
Dementia and Neurocognitive Disorders 2025;24(2):135-146
Background:
and Purpose: Amyloid-beta (Aβ) plaques are key in Alzheimer’s disease (AD), with Aβ positron emission tomography imaging enabling non-invasive quantification.To address regional Aβ deposition, we developed regional Centiloid scales (rdcCL) and commercialized them through the computed tomography (CT)-based BeauBrain Amylo platform, eliminating the need for three-dimensional T1 magnetic resonance imaging (MRI).
Objective:
We aimed to establish robust regional Aβ cutoffs using the commercialized BeauBrain Amylo platform and to explore the prevalence of subgroups defined by global, regional, and striatal Aβ cutoffs across cognitive stages.
Methods:
We included 2,428 individuals recruited from the Korea-Registries to Overcome Dementia and Accelerate Dementia Research project. We calculated regional Aβ cutoffs using Gaussian Mixture Modeling. Participants were classified into subgroups based on global, regional, and striatal Aβ positivity across cognitive stages (cognitively unimpaired [CU], mild cognitive impairment, and dementia of the Alzheimer’s type).
Results:
MRI-based and CT-based global Aβ cutoffs were highly comparable and consistent with previously reported Centiloid values. Regional cutoffs revealed both similarities and differences between MRI- and CT-based methods, reflecting modality-specific segmentation processes. Subgroups such as global(−)regional(+) were more frequent in non-dementia stages, while global(+)striatal(−) was primarily observed in CU individuals.
Conclusions
Our study established robust regional Aβ cutoffs using a CT-based rdcCL method and demonstrated its clinical utility in classifying amyloid subgroups across cognitive stages. These findings highlight the importance of regional Aβ quantification in understanding amyloid pathology and its implications for biomarker-guided diagnosis and treatment in AD.
5.Establishing Regional Aβ Cutoffs andExploring Subgroup Prevalence Across Cognitive Stages Using BeauBrain Amylo®
Seongbeom PARK ; Kyoungmin KIM ; Soyeon YOON ; Seongmi KIM ; Jehyun AHN ; Kyoung Yoon LIM ; Hyemin JANG ; Duk L. NA ; Hee Jin KIM ; Seung Hwan MOON ; Jun Pyo KIM ; Sang Won SEO ; Jaeho KIM ; Kichang KWAK
Dementia and Neurocognitive Disorders 2025;24(2):135-146
Background:
and Purpose: Amyloid-beta (Aβ) plaques are key in Alzheimer’s disease (AD), with Aβ positron emission tomography imaging enabling non-invasive quantification.To address regional Aβ deposition, we developed regional Centiloid scales (rdcCL) and commercialized them through the computed tomography (CT)-based BeauBrain Amylo platform, eliminating the need for three-dimensional T1 magnetic resonance imaging (MRI).
Objective:
We aimed to establish robust regional Aβ cutoffs using the commercialized BeauBrain Amylo platform and to explore the prevalence of subgroups defined by global, regional, and striatal Aβ cutoffs across cognitive stages.
Methods:
We included 2,428 individuals recruited from the Korea-Registries to Overcome Dementia and Accelerate Dementia Research project. We calculated regional Aβ cutoffs using Gaussian Mixture Modeling. Participants were classified into subgroups based on global, regional, and striatal Aβ positivity across cognitive stages (cognitively unimpaired [CU], mild cognitive impairment, and dementia of the Alzheimer’s type).
Results:
MRI-based and CT-based global Aβ cutoffs were highly comparable and consistent with previously reported Centiloid values. Regional cutoffs revealed both similarities and differences between MRI- and CT-based methods, reflecting modality-specific segmentation processes. Subgroups such as global(−)regional(+) were more frequent in non-dementia stages, while global(+)striatal(−) was primarily observed in CU individuals.
Conclusions
Our study established robust regional Aβ cutoffs using a CT-based rdcCL method and demonstrated its clinical utility in classifying amyloid subgroups across cognitive stages. These findings highlight the importance of regional Aβ quantification in understanding amyloid pathology and its implications for biomarker-guided diagnosis and treatment in AD.
6.AI-ECG Supported Decision-Making for Coronary Angiography in Acute Chest Pain: The QCG-AID Study
Jiesuck PARK ; Joonghee KIM ; Soyeon AHN ; Youngjin CHO ; Yeonyee E. YOON
Journal of Korean Medical Science 2025;40(12):e105-
This pilot study evaluates an artificial intelligence (AI)-assisted electrocardiography (ECG) analysis system, QCG, to enhance urgent coronary angiography (CAG) decision-making for acute chest pain in the emergency department (ED). We retrospectively analyzed 300 ED cases, categorized as non-coronary chest pain (Group 1), acute coronary syndrome (ACS) without occlusive coronary artery disease (CAD) (Group 2), and ACS with occlusive CAD (Group 3). Six clinicians made urgent CAG decision using a conventional approach (clinical data and ECG) and a QCG-assisted approach (including QCG scores). The QCG-assisted approach improved correct CAG decisions in Group 2 (36.0% vs. 45.3%, P = 0.003) and Group 3 (85.3% vs. 90.0%, P = 0.017), with minimal impact in Group 1 (92.7% vs. 95.0%, P = 0.125). Diagnostic accuracy for ACS improved from 77% to 81% with QCG assistance and reached 82% with QCG alone, supporting AI's potential to enhance urgent CAG decisionmaking for ED chest pain cases.
7.Establishing Regional Aβ Cutoffs andExploring Subgroup Prevalence Across Cognitive Stages Using BeauBrain Amylo®
Seongbeom PARK ; Kyoungmin KIM ; Soyeon YOON ; Seongmi KIM ; Jehyun AHN ; Kyoung Yoon LIM ; Hyemin JANG ; Duk L. NA ; Hee Jin KIM ; Seung Hwan MOON ; Jun Pyo KIM ; Sang Won SEO ; Jaeho KIM ; Kichang KWAK
Dementia and Neurocognitive Disorders 2025;24(2):135-146
Background:
and Purpose: Amyloid-beta (Aβ) plaques are key in Alzheimer’s disease (AD), with Aβ positron emission tomography imaging enabling non-invasive quantification.To address regional Aβ deposition, we developed regional Centiloid scales (rdcCL) and commercialized them through the computed tomography (CT)-based BeauBrain Amylo platform, eliminating the need for three-dimensional T1 magnetic resonance imaging (MRI).
Objective:
We aimed to establish robust regional Aβ cutoffs using the commercialized BeauBrain Amylo platform and to explore the prevalence of subgroups defined by global, regional, and striatal Aβ cutoffs across cognitive stages.
Methods:
We included 2,428 individuals recruited from the Korea-Registries to Overcome Dementia and Accelerate Dementia Research project. We calculated regional Aβ cutoffs using Gaussian Mixture Modeling. Participants were classified into subgroups based on global, regional, and striatal Aβ positivity across cognitive stages (cognitively unimpaired [CU], mild cognitive impairment, and dementia of the Alzheimer’s type).
Results:
MRI-based and CT-based global Aβ cutoffs were highly comparable and consistent with previously reported Centiloid values. Regional cutoffs revealed both similarities and differences between MRI- and CT-based methods, reflecting modality-specific segmentation processes. Subgroups such as global(−)regional(+) were more frequent in non-dementia stages, while global(+)striatal(−) was primarily observed in CU individuals.
Conclusions
Our study established robust regional Aβ cutoffs using a CT-based rdcCL method and demonstrated its clinical utility in classifying amyloid subgroups across cognitive stages. These findings highlight the importance of regional Aβ quantification in understanding amyloid pathology and its implications for biomarker-guided diagnosis and treatment in AD.
8.AI-ECG Supported Decision-Making for Coronary Angiography in Acute Chest Pain: The QCG-AID Study
Jiesuck PARK ; Joonghee KIM ; Soyeon AHN ; Youngjin CHO ; Yeonyee E. YOON
Journal of Korean Medical Science 2025;40(12):e105-
This pilot study evaluates an artificial intelligence (AI)-assisted electrocardiography (ECG) analysis system, QCG, to enhance urgent coronary angiography (CAG) decision-making for acute chest pain in the emergency department (ED). We retrospectively analyzed 300 ED cases, categorized as non-coronary chest pain (Group 1), acute coronary syndrome (ACS) without occlusive coronary artery disease (CAD) (Group 2), and ACS with occlusive CAD (Group 3). Six clinicians made urgent CAG decision using a conventional approach (clinical data and ECG) and a QCG-assisted approach (including QCG scores). The QCG-assisted approach improved correct CAG decisions in Group 2 (36.0% vs. 45.3%, P = 0.003) and Group 3 (85.3% vs. 90.0%, P = 0.017), with minimal impact in Group 1 (92.7% vs. 95.0%, P = 0.125). Diagnostic accuracy for ACS improved from 77% to 81% with QCG assistance and reached 82% with QCG alone, supporting AI's potential to enhance urgent CAG decisionmaking for ED chest pain cases.
9.Smoking-attributable Mortality in Korea, 2020: A Meta-analysis of 4 Databases
Eunsil CHEON ; Yeun Soo YANG ; Suyoung JO ; Jieun HWANG ; Keum Ji JUNG ; Sunmi LEE ; Seong Yong PARK ; Kyoungin NA ; Soyeon KIM ; Sun Ha JEE ; Sung-il CHO
Journal of Preventive Medicine and Public Health 2024;57(4):327-338
Objectives:
Estimating the number of deaths caused by smoking is crucial for developing and evaluating tobacco control and smoking cessation policies. This study aimed to determine smoking-attributable mortality (SAM) in Korea in 2020.
Methods:
Four large-scale cohorts from Korea were analyzed. A Cox proportional-hazards model was used to determine the hazard ratios (HRs) of smoking-related death. By conducting a meta-analysis of these HRs, the pooled HRs of smoking-related death for 41 diseases were estimated. Population-attributable fractions (PAFs) were calculated based on the smoking prevalence for 1995 in conjunction with the pooled HRs. Subsequently, SAM was derived using the PAF and the number of deaths recorded for each disease in 2020.
Results:
The pooled HR for all-cause mortality attributable to smoking was 1.73 for current men smokers (95% confidence interval [CI], 1.53 to 1.95) and 1.63 for current women smokers (95% CI, 1.37 to 1.94). Smoking accounted for 33.2% of all-cause deaths in men and 4.6% in women. Additionally, it was a factor in 71.8% of men lung cancer deaths and 11.9% of women lung cancer deaths. In 2020, smoking was responsible for 53 930 men deaths and 6283 women deaths, totaling 60 213 deaths.
Conclusions
Cigarette smoking was responsible for a significant number of deaths in Korea in 2020. Monitoring the impact and societal burden of smoking is essential for effective tobacco control and harm prevention policies.
10.Extracellular Vimentin Alters Energy Metabolism And Induces Adipocyte Hypertrophy
Ji-Hae PARK ; Soyeon KWON ; Young Mi PARK
Diabetes & Metabolism Journal 2024;48(2):215-230
Background:
Previous studies have reported that oxidative stress contributes to obesity characterized by adipocyte hypertrophy. However, mechanism has not been studied extensively. In the current study, we evaluated role of extracellular vimentin secreted by oxidized low-density lipoprotein (oxLDL) in energy metabolism in adipocytes.
Methods:
We treated 3T3-L1-derived adipocytes with oxLDL and measured vimentin which was secreted in the media. We evaluated changes in uptake of glucose and free fatty acid, expression of molecules functioning in energy metabolism, synthesis of adenosine triphosphate (ATP) and lactate, markers for endoplasmic reticulum (ER) stress and autophagy in adipocytes treated with recombinant vimentin.
Results:
Adipocytes secreted vimentin in response to oxLDL. Microscopic evaluation revealed that vimentin treatment induced increase in adipocyte size and increase in sizes of intracellular lipid droplets with increased intracellular triglyceride. Adipocytes treated with vimentin showed increased uptake of glucose and free fatty acid with increased expression of plasma membrane glucose transporter type 1 (GLUT1), GLUT4, and CD36. Vimentin treatment increased transcription of GLUT1 and hypoxia-inducible factor 1α (Hif-1α) but decreased GLUT4 transcription. Adipose triglyceride lipase (ATGL), peroxisome proliferator-activated receptor γ (PPARγ), sterol regulatory element-binding protein 1 (SREBP1), diacylglycerol O-acyltransferase 1 (DGAT1) and 2 were decreased by vimentin treatment. Markers for ER stress were increased and autophagy was impaired in vimentin-treated adipocytes. No change was observed in synthesis of ATP and lactate in the adipocytes treated with vimentin.
Conclusion
We concluded that extracellular vimentin regulates expression of molecules in energy metabolism and promotes adipocyte hypertrophy. Our results show that vimentin functions in the interplay between oxidative stress and metabolism, suggesting a mechanism by which adipocyte hypertrophy is induced in oxidative stress.

Result Analysis
Print
Save
E-mail