2.Temporal Radiographic Trajectory and Clinical Outcomes in COVID-19Pneumonia: A Longitudinal Study
Dong-Won AHN ; Yeonju SEO ; Taewan GOO ; Ji Bong JEONG ; Taesung PARK ; Soon Ho YOON
Journal of Korean Medical Science 2025;40(9):e25-
Background:
Currently, little is known about the relationship between the temporal radiographic latent trajectories, which are based on the extent of coronavirus disease 2019 (COVID-19) pneumonia and clinical outcomes. This study aimed to elucidate the differences in the temporal trends of critical laboratory biomarkers, utilization of critical care support, and clinical outcomes according to temporal radiographic latent trajectories.
Methods:
We enrolled 2,385 patients who were hospitalized with COVID-19 and underwent serial chest radiographs from December 2019 to March 2022. The extent of radiographic pneumonia was quantified as a percentage using a previously developed deep-learning algorithm. A latent class growth model was used to identify the trajectories of the longitudinal changes of COVID-19 pneumonia extents during hospitalization. We investigated the differences in the temporal trends of critical laboratory biomarkers among the temporal radiographic trajectory groups. Cox regression analyses were conducted to investigate differences in the utilization of critical care supports and clinical outcomes among the temporal radiographic trajectory groups.
Results:
The mean age of the enrolled patients was 58.0 ± 16.9 years old, with 1,149 (48.2%) being male. Radiographic pneumonia trajectories were classified into three groups: The steady group (n = 1,925, 80.7%) exhibited stable minimal pneumonia, the downhill group (n = 135, 5.7%) exhibited initial worsening followed by improving pneumonia, and the uphill group (n = 325, 13.6%) exhibited progressive deterioration of pneumonia. There were distinct differences in the patterns of temporal blood urea nitrogen (BUN) and C-reactive protein (CRP) levels between the uphill group and the other two groups. Cox regression analyses revealed that the hazard ratios (HRs) for the need for critical care support and the risk of intensive care unit admission were significantly higher in both the downhill and uphill groups compared to the steady group. However, regarding in-hospital mortality, only the uphill group demonstrated a significantly higher risk than the steady group (HR, 8.2; 95% confidence interval, 3.08–21.98).
Conclusion
Stratified pneumonia trajectories, identified through serial chest radiographs, are linked to different patterns of temporal changes in BUN and CRP levels. These changes can predict the need for critical care support and clinical outcomes in COVID-19 pneumonia.Appropriate therapeutic strategies should be tailored based on these disease trajectories.
4.Temporal Radiographic Trajectory and Clinical Outcomes in COVID-19Pneumonia: A Longitudinal Study
Dong-Won AHN ; Yeonju SEO ; Taewan GOO ; Ji Bong JEONG ; Taesung PARK ; Soon Ho YOON
Journal of Korean Medical Science 2025;40(9):e25-
Background:
Currently, little is known about the relationship between the temporal radiographic latent trajectories, which are based on the extent of coronavirus disease 2019 (COVID-19) pneumonia and clinical outcomes. This study aimed to elucidate the differences in the temporal trends of critical laboratory biomarkers, utilization of critical care support, and clinical outcomes according to temporal radiographic latent trajectories.
Methods:
We enrolled 2,385 patients who were hospitalized with COVID-19 and underwent serial chest radiographs from December 2019 to March 2022. The extent of radiographic pneumonia was quantified as a percentage using a previously developed deep-learning algorithm. A latent class growth model was used to identify the trajectories of the longitudinal changes of COVID-19 pneumonia extents during hospitalization. We investigated the differences in the temporal trends of critical laboratory biomarkers among the temporal radiographic trajectory groups. Cox regression analyses were conducted to investigate differences in the utilization of critical care supports and clinical outcomes among the temporal radiographic trajectory groups.
Results:
The mean age of the enrolled patients was 58.0 ± 16.9 years old, with 1,149 (48.2%) being male. Radiographic pneumonia trajectories were classified into three groups: The steady group (n = 1,925, 80.7%) exhibited stable minimal pneumonia, the downhill group (n = 135, 5.7%) exhibited initial worsening followed by improving pneumonia, and the uphill group (n = 325, 13.6%) exhibited progressive deterioration of pneumonia. There were distinct differences in the patterns of temporal blood urea nitrogen (BUN) and C-reactive protein (CRP) levels between the uphill group and the other two groups. Cox regression analyses revealed that the hazard ratios (HRs) for the need for critical care support and the risk of intensive care unit admission were significantly higher in both the downhill and uphill groups compared to the steady group. However, regarding in-hospital mortality, only the uphill group demonstrated a significantly higher risk than the steady group (HR, 8.2; 95% confidence interval, 3.08–21.98).
Conclusion
Stratified pneumonia trajectories, identified through serial chest radiographs, are linked to different patterns of temporal changes in BUN and CRP levels. These changes can predict the need for critical care support and clinical outcomes in COVID-19 pneumonia.Appropriate therapeutic strategies should be tailored based on these disease trajectories.
6.Temporal Radiographic Trajectory and Clinical Outcomes in COVID-19Pneumonia: A Longitudinal Study
Dong-Won AHN ; Yeonju SEO ; Taewan GOO ; Ji Bong JEONG ; Taesung PARK ; Soon Ho YOON
Journal of Korean Medical Science 2025;40(9):e25-
Background:
Currently, little is known about the relationship between the temporal radiographic latent trajectories, which are based on the extent of coronavirus disease 2019 (COVID-19) pneumonia and clinical outcomes. This study aimed to elucidate the differences in the temporal trends of critical laboratory biomarkers, utilization of critical care support, and clinical outcomes according to temporal radiographic latent trajectories.
Methods:
We enrolled 2,385 patients who were hospitalized with COVID-19 and underwent serial chest radiographs from December 2019 to March 2022. The extent of radiographic pneumonia was quantified as a percentage using a previously developed deep-learning algorithm. A latent class growth model was used to identify the trajectories of the longitudinal changes of COVID-19 pneumonia extents during hospitalization. We investigated the differences in the temporal trends of critical laboratory biomarkers among the temporal radiographic trajectory groups. Cox regression analyses were conducted to investigate differences in the utilization of critical care supports and clinical outcomes among the temporal radiographic trajectory groups.
Results:
The mean age of the enrolled patients was 58.0 ± 16.9 years old, with 1,149 (48.2%) being male. Radiographic pneumonia trajectories were classified into three groups: The steady group (n = 1,925, 80.7%) exhibited stable minimal pneumonia, the downhill group (n = 135, 5.7%) exhibited initial worsening followed by improving pneumonia, and the uphill group (n = 325, 13.6%) exhibited progressive deterioration of pneumonia. There were distinct differences in the patterns of temporal blood urea nitrogen (BUN) and C-reactive protein (CRP) levels between the uphill group and the other two groups. Cox regression analyses revealed that the hazard ratios (HRs) for the need for critical care support and the risk of intensive care unit admission were significantly higher in both the downhill and uphill groups compared to the steady group. However, regarding in-hospital mortality, only the uphill group demonstrated a significantly higher risk than the steady group (HR, 8.2; 95% confidence interval, 3.08–21.98).
Conclusion
Stratified pneumonia trajectories, identified through serial chest radiographs, are linked to different patterns of temporal changes in BUN and CRP levels. These changes can predict the need for critical care support and clinical outcomes in COVID-19 pneumonia.Appropriate therapeutic strategies should be tailored based on these disease trajectories.
8.Temporal Radiographic Trajectory and Clinical Outcomes in COVID-19Pneumonia: A Longitudinal Study
Dong-Won AHN ; Yeonju SEO ; Taewan GOO ; Ji Bong JEONG ; Taesung PARK ; Soon Ho YOON
Journal of Korean Medical Science 2025;40(9):e25-
Background:
Currently, little is known about the relationship between the temporal radiographic latent trajectories, which are based on the extent of coronavirus disease 2019 (COVID-19) pneumonia and clinical outcomes. This study aimed to elucidate the differences in the temporal trends of critical laboratory biomarkers, utilization of critical care support, and clinical outcomes according to temporal radiographic latent trajectories.
Methods:
We enrolled 2,385 patients who were hospitalized with COVID-19 and underwent serial chest radiographs from December 2019 to March 2022. The extent of radiographic pneumonia was quantified as a percentage using a previously developed deep-learning algorithm. A latent class growth model was used to identify the trajectories of the longitudinal changes of COVID-19 pneumonia extents during hospitalization. We investigated the differences in the temporal trends of critical laboratory biomarkers among the temporal radiographic trajectory groups. Cox regression analyses were conducted to investigate differences in the utilization of critical care supports and clinical outcomes among the temporal radiographic trajectory groups.
Results:
The mean age of the enrolled patients was 58.0 ± 16.9 years old, with 1,149 (48.2%) being male. Radiographic pneumonia trajectories were classified into three groups: The steady group (n = 1,925, 80.7%) exhibited stable minimal pneumonia, the downhill group (n = 135, 5.7%) exhibited initial worsening followed by improving pneumonia, and the uphill group (n = 325, 13.6%) exhibited progressive deterioration of pneumonia. There were distinct differences in the patterns of temporal blood urea nitrogen (BUN) and C-reactive protein (CRP) levels between the uphill group and the other two groups. Cox regression analyses revealed that the hazard ratios (HRs) for the need for critical care support and the risk of intensive care unit admission were significantly higher in both the downhill and uphill groups compared to the steady group. However, regarding in-hospital mortality, only the uphill group demonstrated a significantly higher risk than the steady group (HR, 8.2; 95% confidence interval, 3.08–21.98).
Conclusion
Stratified pneumonia trajectories, identified through serial chest radiographs, are linked to different patterns of temporal changes in BUN and CRP levels. These changes can predict the need for critical care support and clinical outcomes in COVID-19 pneumonia.Appropriate therapeutic strategies should be tailored based on these disease trajectories.
9.Current issues in the treatment of adolescent idiopathic scoliosis: a comprehensive narrative review
Hyoungmin KIM ; Bong-Soon CHANG ; Sam Yeol CHANG
Asian Spine Journal 2024;18(5):731-742
Adolescent idiopathic scoliosis (AIS) is a three-dimensional deformity of unknown etiology that commonly affects adolescents, imposing significant socioeconomic burdens. Effective management necessitates a comprehensive approach that takes into account multiple factors, including growth potential and psychological issues. Despite significant advancements in AIS management, several questions regarding optimal treatment strategies persist. Recent technological advancements are transforming the treatment landscape, encompassing advancements in bracing, robotic-assisted deformity corrections, and other interventions. This review explores current issues debated in the literature concerning the treatment of AIS, focusing on contemporary high-level evidence (e.g., meta-analyses and randomized controlled trials). Furthermore, this review explores cutting-edge developments and future directions in AIS management, including the integration of artificial intelligence and augmented reality.
10.Study Design and Protocol for a Randomized Controlled Trial to Assess Long-Term Efficacy and Safety of a Triple Combination of Ezetimibe, Fenofibrate, and Moderate-Intensity Statin in Patients with Type 2 Diabetes and Modifiable Cardiovascular Risk Factors (ENSEMBLE)
Nam Hoon KIM ; Juneyoung LEE ; Suk CHON ; Jae Myung YU ; In-Kyung JEONG ; Soo LIM ; Won Jun KIM ; Keeho SONG ; Ho Chan CHO ; Hea Min YU ; Kyoung-Ah KIM ; Sang Soo KIM ; Soon Hee LEE ; Chong Hwa KIM ; Soo Heon KWAK ; Yong‐ho LEE ; Choon Hee CHUNG ; Sihoon LEE ; Heung Yong JIN ; Jae Hyuk LEE ; Gwanpyo KOH ; Sang-Yong KIM ; Jaetaek KIM ; Ju Hee LEE ; Tae Nyun KIM ; Hyun Jeong JEON ; Ji Hyun LEE ; Jae-Han JEON ; Hye Jin YOO ; Hee Kyung KIM ; Hyeong-Kyu PARK ; Il Seong NAM-GOONG ; Seongbin HONG ; Chul Woo AHN ; Ji Hee YU ; Jong Heon PARK ; Keun-Gyu PARK ; Chan Ho PARK ; Kyong Hye JOUNG ; Ohk-Hyun RYU ; Keun Yong PARK ; Eun-Gyoung HONG ; Bong-Soo CHA ; Kyu Chang WON ; Yoon-Sok CHUNG ; Sin Gon KIM
Endocrinology and Metabolism 2024;39(5):722-731
Background:
Atherogenic dyslipidemia, which is frequently associated with type 2 diabetes (T2D) and insulin resistance, contributes to the development of vascular complications. Statin therapy is the primary approach to dyslipidemia management in T2D, however, the role of non-statin therapy remains unclear. Ezetimibe reduces cholesterol burden by inhibiting intestinal cholesterol absorption. Fibrates lower triglyceride levels and increase high-density lipoprotein cholesterol (HDL-C) levels via peroxisome proliferator- activated receptor alpha agonism. Therefore, when combined, these drugs effectively lower non-HDL-C levels. Despite this, few clinical trials have specifically targeted non-HDL-C, and the efficacy of triple combination therapies, including statins, ezetimibe, and fibrates, has yet to be determined.
Methods:
This is a multicenter, prospective, randomized, open-label, active-comparator controlled trial involving 3,958 eligible participants with T2D, cardiovascular risk factors, and elevated non-HDL-C (≥100 mg/dL). Participants, already on moderate-intensity statins, will be randomly assigned to either Ezefeno (ezetimibe/fenofibrate) addition or statin dose-escalation. The primary end point is the development of a composite of major adverse cardiovascular and diabetic microvascular events over 48 months.
Conclusion
This trial aims to assess whether combining statins, ezetimibe, and fenofibrate is as effective as, or possibly superior to, statin monotherapy intensification in lowering cardiovascular and microvascular disease risk for patients with T2D. This could propose a novel therapeutic approach for managing dyslipidemia in T2D.

Result Analysis
Print
Save
E-mail