1.High expression of variable domain of heavy-chain antibodies in Expi293F cells with optimized signal peptide and codons.
Shuzhen TAN ; Hu DONG ; Songjia PAN ; Suyu MU ; Yongjie CHEN ; Yun ZHANG ; Shiqi SUN ; Huichen GUO
Chinese Journal of Biotechnology 2024;40(11):4219-4227
The variable domain of heavy-chain antibody (VHH) has been developed widely in drug therapy, diagnosis, and research. Escherichia coli is the most popular expression system for VHH production, whereas low bioactivity occurs sometimes. Mammalian cells are one of the most ideal hosts for VHH expression at present. To improve the yield of VHH in Expi293F cells, we optimized the signal peptide (SP) and codons of VHH. Firstly, the fusion protein VHH1-Fc was used to screen SPs. The SP IFN-α2 showed the highest secretion as quantified by enzyme-linked immunosorbent assay (ELISA). Subsequently, codon optimization by improving GC3 and GC content doubled the yield of VHH1 and kept its binding activity to Senecavirus A (SVA). Finally, the mean yields of other 5 VHHs that fused with SP IFN-α2 and codon-optimized were over 191.6 mg/L, and these VHHs had high recovery and high purity in the culture supernatant. This study confirms that SP IFN-α2 and codon optimization could produce VHHs in Expi293F cells efficiently, which provides a reference for the large-scale production of VHHs.
Codon/genetics*
;
Protein Sorting Signals/genetics*
;
Escherichia coli/metabolism*
;
Humans
;
Recombinant Fusion Proteins/biosynthesis*
;
Interferon-alpha/metabolism*
;
Immunoglobulin Heavy Chains/immunology*
;
Cell Line
;
Immunoglobulin Variable Region/immunology*
2.Mechanism of highly expressed primary cilia in tibial growth plate chondrocyte accelerating chondrocyte differentiation in young rats with chronic renal failure
Xiaojian WANG ; Rongshan LI ; Wei TIAN ; Gang ZHENG ; Hong BI ; Yanhong WANG ; Lina DONG ; Songjia GUO ; Xiao LU ; Xiaoshuang ZHOU
Chinese Journal of Nephrology 2021;37(9):758-764
Objective:To explore the mechanism of highly expressed primary cilia in tibial growth plate chondrocytes accelerating chondrocytes differentiation in young rats with chronic renal failure (CRF).Methods:Forty male 4-week-old SD rats weighing (98±3) g were randomly divided into control group (intragastric administration with distilled water, n=20) and CRF group (intragastric administration with adenine suspension 150 mg·kg -1·d -1, n=20). All the young rats were sacrificed after continuous gavage for 6 weeks. The length of the growth plate was measured with histological sections. Immunofluorescence (IF) was used to detect the expression rate of primary cilia and the level of β-catenin, the key protein of Wnt/β-catenin signaling pathway in tibial growth plate chondrocytes. Chondrocytes isolated from growth plate in two groups were cultured in vitro to P3 generation, and the expression rate of primary cilia in chondrocytes, the levels of Indian hedgehog (IHH) and glycogen synthase kinase 3β (GSK3β) were detected by IF. Co-immunoprecipitation was used to detect the relationship between IHH and GSK3β. Results:Compared with the control group, the relative length of the growth plate was shorter in histological sections [(0.51±0.11) vs (1.00±0.08), t=16.11, P<0.001], the expression rate of primary cilia was higher [(26.3±5.5)% vs (7.6±1.9)%, t=14.37, P<0.001], and the level of β-catenin increased [(7.1±2.0) scores vs (3.6±1.0) scores, t=7.10, P<0.001] in CRF group. In vitro, the expression rate of primary cilia was higher in CRF group chondrocytes [(31.4±8.2)% vs (12.5±3.1)%, t=9.64, P<0.001] than that in control group. The level of IHH in CRF group increased than that in control group [(1 360±270) vs (310±84), t=16.61, P<0.001]. There was no significant difference in GSK3β level of chondrocytes between the two groups [(850±195) vs (780±140), t=1.30, P=0.200]. There was a direct interaction between IHH and GSK3β in CRF group chondrocytes. Conclusions:The expression levels of primary cilia and related protein IHH increase in tibial growth plate chondrocytes of CRF young rats. The IHH protein plays a direct interaction with GSK3β protein, Wnt/β-catenin signaling pathway antagonist, which leads to the activation of Wnt/β-catenin signaling pathway and final accelerated differentiation of chondrocytes. The rapid differentiation of chondrocytes causes the closing trend of growth plate.

Result Analysis
Print
Save
E-mail