1.Exploring Chemical Constituent Distribution in Blood/Brain(Hippocampus) and Emotional Regulatory Effect of Raw and Vinegar-processed Products of Citri Reticulatae Pericarpium Viride
Yi BAO ; Yonggui SONG ; Qianmin LI ; Zhifu AI ; Genhua ZHU ; Ming YANG ; Huanhua XU ; Qin ZHENG ; Yiting HUANG ; Zihan GAO ; Dan SU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):189-197
ObjectiveTo investigate the migration and distribution characteristics of chemical constituents in blood and hippocampal tissues before and after vinegar processing of Citri Reticulatae Pericarpium Viride(CRPV), and to explore the potential material basis and mechanisms underlying their regulatory effects on emotional disorders by comparing the effects of raw and vinegar-processed products of CRPV. MethodsUltra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) was employed to characterize and identify the chemical constituents of raw and vinegar-processed products of CRPV extracts, as well as their migrating components in blood and hippocampal tissues after oral administration. Reference standards, databases, and relevant literature were utilized for compound annotation, with data processing performed using PeakView 1.2 software. Seventy male C57BL/6 mice were randomly divided into seven groups, including the blank group, model group, diazepam group(2.5 mg·kg-1), raw CRPV low/high dose groups(0.6, 1.2 g·kg-1), and vinegar-processed CRPV low/high dose groups(0.6, 1.2 g·kg-1), with 10 mice per group. Except for the blank group, all other groups underwent chronic restraint stress(2 h·d-1) for 20 d. Each drug-treated group received oral administration at the predetermined dose starting 10 d after modeling, with a total treatment duration of 10 d. Following model-based drug administration, mice underwent open-field, forced swimming, and elevated plus maze tests. After anesthesia with isoflurane, whole brains were collected from each group of mice, and hippocampi were dissected. Reactive oxygen species(ROS) level in hippocampal tissues was quantified by enzyme-linked immunosorbent assay(ELISA). Hematoxylin-eosin(HE) staining was used to observe hippocampal tissue morphology. Immunofluorescence was performed to detect neuronal nuclei(NeuN) and peroxisome proliferator-activated receptor alpha(PPARα) expressions in hippocampal tissue. Then, pharmacodynamic evaluations were conducted to assess the effects of raw and vinegar-processed CRPV on mood disorders, exploring the potential mechanisms. ResultsVinegar processing caused significant changes in the chemical composition of CRPV, with 18 components showing increased relative content and 35 components showing decreased relative content. The primary changes occurred in flavonoid compounds, including 20 flavonoids, 20 flavonoid glycosides, 3 triterpenes, 3 phenolic acids, 1 alkaloid, and 6 other compounds. Twenty-one components were detected in blood(15 methoxyflavones, 4 flavonoid glycosides, and 2 phenolic acids), with 17 shared between raw and vinegar-processed CRPV. Seven components reached hippocampal tissues(all common to both forms). In regulating emotional disorders, Vinegar-processed CRPV exhibited superior antidepressant-like effects compared to raw products. HE staining revealed that both treatments improved hippocampal neuronal morphology, particularly in the damaged CA1 and CA3 regions. Immunofluorescence and ELISA analyses demonstrated that both raw and vinegar-processed CRPV significantly modulated NeuN and PPARα expressions in hippocampal tissue while alleviating oxidative stress induced by excessive ROS(P<0.05). ConclusionThe chemical composition of CRPV undergoes changes after vinegar processing, but the migrating components in blood and hippocampus are primarily methoxyflavonoids. These components may serve as the potential material basis for activating the PPARα pathway, thereby negatively regulating ROS generation in the hippocampus, reducing oxidative stress, and promoting the development of NeuN-positive neurons. These findings provide experimental evidence for enhancing quality standards, pharmacodynamic material research, and active drug development of raw and vinegar-processed CRPV.
2.Study of adsorption of coated aldehyde oxy-starch on the indexes of renal failure
Qian WU ; Cai-fen WANG ; Ning-ning PENG ; Qin NIE ; Tian-fu LI ; Jian-yu LIU ; Xiang-yi SONG ; Jian LIU ; Su-ping WU ; Ji-wen ZHANG ; Li-xin SUN
Acta Pharmaceutica Sinica 2025;60(2):498-505
The accumulation of uremic toxins such as urea nitrogen, blood creatinine, and uric acid of patients with renal failure
3.Effect of electroacupuncture on learning and memory abilities in vascular dementia rats via the NCOA4/FTH1 signaling pathway-mediated ferritinophagy.
Wei SUN ; Yinghua CHEN ; Tong WU ; Hongxu ZHAO ; Haoyu WANG ; Ruiqi QIN ; Xiaoqing SU ; Junfeng LI ; Yuanyu SONG ; Yue MIAO ; Xinran LI ; Yusheng HAN
Chinese Acupuncture & Moxibustion 2025;45(9):1271-1280
OBJECTIVE:
To observe the effect of electroacupuncture at "Sishencong" (EX-HN1) and "Fengchi" (GB20) on hippocampal neuronal ferritinophagy mediated by the nuclear receptor coactivator 4 (NCOA4)/ferritin heavy chain 1 (FTH1) signaling pathway in vascular dementia (VD) rats, and to explore the potential mechanisms of electroacupuncture for VD.
METHODS:
A total of 60 male rats of SPF grade were randomly divided into a blank group (12 rats), a sham surgery group (12 rats) and a modeling group (36 rats). In the modeling group, the modified 4-vessel occlusion method was used to establish the VD model. The 24 successfully modeled rats were randomly divided into a model group and an electroacupuncture group, with 12 rats in each group. In the electroacupuncture group, electroacupuncture was applied at left and right "Sishencong" (EX-HN1), and bilateral "Fengchi" (GB20), with continuous wave, in frequency of 2 Hz and current intensity of 1 mA, 30 min a time, once daily for 21 consecutive days. The learning and memory abilities were assessed using the Morris water maze test before modeling, after modeling and after intervention, as well as the novel object recognition test after intervention. After intervention, the neuronal morphology in the hippocampus was observed by Nissl staining; the iron deposition was observed by Prussian blue staining; the reactive oxygen species (ROS) level was detected by dihydroethidium (DHE) fluorescence staining; the levels of iron, malondialdehyde (MDA) and superoxide dismutase (SOD) in the hippocampal tissue were measured by the colorimetric assay, TBA method, and WST-1 method, respectively; the positive expression of NCOA4, FTH1 and glutathione peroxidase 4 (GPX4) was detected by immunohistochemistry; the protein expression of NCOA4, FTH1, GPX4, and the ratio of microtubule-associated protein 1 light chain 3B (LC3B) Ⅱ/Ⅰ in the hippocampus were detected by Western blot.
RESULTS:
Compared with the sham surgery group, in the model group, the escape latency was prolonged, and the number of platform crossings reduced (P<0.01), the recognition index (RI) was decreased (P<0.01); the hippocampal neurons displayed a blurred laminar structure, disorganized cellular arrangement, and the number of Nissl bodies was decreased (P<0.01); the percentage of iron deposition area in the hippocampus was increased (P<0.01); in the hippocampus, the levels of ROS, iron, MDA, and the protein expression of NCOA4, as well as the LC3B Ⅱ/Ⅰ ratio were increased (P<0.01), the SOD level, and the protein expression of FTH1 and GPX4 were decreased (P<0.01). Compared with the model group, in the electroacupuncture group, the escape latency was shortened and the number of platform crossings was increased (P<0.01), the RI was increased (P<0.01); the hippocampal neurons exhibited more regular morphology, better-organized cellular structure, and the number of Nissl bodies was increased (P<0.05); the percentage of iron deposition area in the hippocampus reduced (P<0.01); in the hippocampus, the levels of ROS, iron, MDA, and the protein expression of NCOA4, as well as the LC3B Ⅱ/Ⅰ ratio were decreased (P<0.01, P<0.05), the SOD level, and the protein expression of FTH1 and GPX4 were increased (P<0.01).
CONCLUSION
Electroacupuncture at "Sishencong" (EX-HN1) and "Fengchi" (GB20) can improve learning and memory abilities in VD rats, and its mechanism may be associated with the regulation of the hippocampal NCOA4/FTH1 signaling pathway, inhibition of ferritinophagy, and alleviation of oxidative stress damage.
Animals
;
Electroacupuncture
;
Dementia, Vascular/genetics*
;
Male
;
Rats
;
Signal Transduction
;
Humans
;
Memory
;
Rats, Sprague-Dawley
;
Nuclear Receptor Coactivators/genetics*
;
Ferritins/genetics*
;
Learning
;
Hippocampus/metabolism*
;
Acupuncture Points
4.USP29 alleviates the progression of MASLD by stabilizing ACSL5 through K48 deubiquitination
Sha HU ; Zhouxiang WANG ; Kun ZHU ; Hongjie SHI ; Fang QIN ; Tuo ZHANG ; Song TIAN ; Yanxiao JI ; Jianqing ZHANG ; Juanjuan QIN ; Zhigang SHE ; Xiaojing ZHANG ; Peng ZHANG ; Hongliang LI
Clinical and Molecular Hepatology 2025;31(1):147-165
Background/Aims:
Metabolic dysfunction–associated steatotic liver disease (MASLD) is a chronic liver disease characterized by hepatic steatosis. Ubiquitin-specific protease 29 (USP29) plays pivotal roles in hepatic ischemiareperfusion injury and hepatocellular carcinoma, but its role in MASLD remains unexplored. Therefore, the aim of this study was to reveal the effects and underlying mechanisms of USP29 in MASLD progression.
Methods:
USP29 expression was assessed in liver samples from MASLD patients and mice. The role and molecular mechanism of USP29 in MASLD were assessed in high-fat diet-fed and high-fat/high-cholesterol diet-fed mice and palmitic acid and oleic acid treated hepatocytes.
Results:
USP29 protein levels were significantly reduced in mice and humans with MASLD. Hepatic steatosis, inflammation and fibrosis were significantly exacerbated by USP29 deletion and relieved by USP29 overexpression. Mechanistically, USP29 significantly activated the expression of genes related to fatty acid β-oxidation (FAO) under metabolic stimulation, directly interacted with long-chain acyl-CoA synthase 5 (ACSL5) and repressed ACSL5 degradation by increasing ACSL5 K48-linked deubiquitination. Moreover, the effect of USP29 on hepatocyte lipid accumulation and MASLD was dependent on ACSL5.
Conclusions
USP29 functions as a novel negative regulator of MASLD by stabilizing ACSL5 to promote FAO. The activation of the USP29-ACSL5 axis may represent a potential therapeutic strategy for MASLD.
5.USP29 alleviates the progression of MASLD by stabilizing ACSL5 through K48 deubiquitination
Sha HU ; Zhouxiang WANG ; Kun ZHU ; Hongjie SHI ; Fang QIN ; Tuo ZHANG ; Song TIAN ; Yanxiao JI ; Jianqing ZHANG ; Juanjuan QIN ; Zhigang SHE ; Xiaojing ZHANG ; Peng ZHANG ; Hongliang LI
Clinical and Molecular Hepatology 2025;31(1):147-165
Background/Aims:
Metabolic dysfunction–associated steatotic liver disease (MASLD) is a chronic liver disease characterized by hepatic steatosis. Ubiquitin-specific protease 29 (USP29) plays pivotal roles in hepatic ischemiareperfusion injury and hepatocellular carcinoma, but its role in MASLD remains unexplored. Therefore, the aim of this study was to reveal the effects and underlying mechanisms of USP29 in MASLD progression.
Methods:
USP29 expression was assessed in liver samples from MASLD patients and mice. The role and molecular mechanism of USP29 in MASLD were assessed in high-fat diet-fed and high-fat/high-cholesterol diet-fed mice and palmitic acid and oleic acid treated hepatocytes.
Results:
USP29 protein levels were significantly reduced in mice and humans with MASLD. Hepatic steatosis, inflammation and fibrosis were significantly exacerbated by USP29 deletion and relieved by USP29 overexpression. Mechanistically, USP29 significantly activated the expression of genes related to fatty acid β-oxidation (FAO) under metabolic stimulation, directly interacted with long-chain acyl-CoA synthase 5 (ACSL5) and repressed ACSL5 degradation by increasing ACSL5 K48-linked deubiquitination. Moreover, the effect of USP29 on hepatocyte lipid accumulation and MASLD was dependent on ACSL5.
Conclusions
USP29 functions as a novel negative regulator of MASLD by stabilizing ACSL5 to promote FAO. The activation of the USP29-ACSL5 axis may represent a potential therapeutic strategy for MASLD.
6.USP29 alleviates the progression of MASLD by stabilizing ACSL5 through K48 deubiquitination
Sha HU ; Zhouxiang WANG ; Kun ZHU ; Hongjie SHI ; Fang QIN ; Tuo ZHANG ; Song TIAN ; Yanxiao JI ; Jianqing ZHANG ; Juanjuan QIN ; Zhigang SHE ; Xiaojing ZHANG ; Peng ZHANG ; Hongliang LI
Clinical and Molecular Hepatology 2025;31(1):147-165
Background/Aims:
Metabolic dysfunction–associated steatotic liver disease (MASLD) is a chronic liver disease characterized by hepatic steatosis. Ubiquitin-specific protease 29 (USP29) plays pivotal roles in hepatic ischemiareperfusion injury and hepatocellular carcinoma, but its role in MASLD remains unexplored. Therefore, the aim of this study was to reveal the effects and underlying mechanisms of USP29 in MASLD progression.
Methods:
USP29 expression was assessed in liver samples from MASLD patients and mice. The role and molecular mechanism of USP29 in MASLD were assessed in high-fat diet-fed and high-fat/high-cholesterol diet-fed mice and palmitic acid and oleic acid treated hepatocytes.
Results:
USP29 protein levels were significantly reduced in mice and humans with MASLD. Hepatic steatosis, inflammation and fibrosis were significantly exacerbated by USP29 deletion and relieved by USP29 overexpression. Mechanistically, USP29 significantly activated the expression of genes related to fatty acid β-oxidation (FAO) under metabolic stimulation, directly interacted with long-chain acyl-CoA synthase 5 (ACSL5) and repressed ACSL5 degradation by increasing ACSL5 K48-linked deubiquitination. Moreover, the effect of USP29 on hepatocyte lipid accumulation and MASLD was dependent on ACSL5.
Conclusions
USP29 functions as a novel negative regulator of MASLD by stabilizing ACSL5 to promote FAO. The activation of the USP29-ACSL5 axis may represent a potential therapeutic strategy for MASLD.
7.Exploring Regulatory Effect of Kaixuan Jiedu Core Prescription on SPHK2/S1P/MCP-1 Pathway in Psoriasis-like Mouse Model Based on Sphingolipid Metabolism
Yeping QIN ; Wenhui LIU ; Dan DAI ; Jia XU ; Chong LI ; Bin YANG ; Ping SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):60-68
ObjectiveTo explore the effects of Kaixuan Jiedu core prescription (KXJD) on sphingolipid metabolism in the mouse model of imiquimod-induced psoriasis-like skin lesions. MethodsThirty-seven male C57BL/6J mice were randomly assigned into five groups: healthy control (n=11), model (n=11), methotrexate (MTX, n=5), low-dose (15.21 g·kg-1) KXJD (n=5), and high-dose (30.42 g·kg-1) KXJD (n=5). Psoriasis-like skin lesions were induced in mice with 62.5 mg 5% imiquimod cream applied on the back. The KXJD groups and MTX group were treated with 0.2 mL corresponding decoction and MTX, respectively, by gavage daily, while the other groups were given an equal volume of normal saline by the same way. After 5 days of treatment, back skin lesions were collected. Firstly, healthy control and model mice were selected for tandem mass tag (TMT) quantitative proteomics (control vs model=3 vs 3) and targeted lipid metabolomics (control vs model=11 vs 11). Then, the binding degree between core components and target proteins was predicted via network pharmacology and molecular docking. Finally, an animal experiment was performed to decipher the specific regulation mechanism of KXJD on sphingolipid metabolism. Immunohistochemistry was employed to determine the expression level of sphingosine-1-phosphate (S1P), and Western blot was employed to determine the expression levels of sphingosine kinase 2 (SPHK2) and monocyte chemotactic protein-1 (MCP-1). ResultsTMT proteomics and targeted lipid metabolomics suggested that sphingolipid metabolism was active in the psoriatic skin, and key proteases [serine palmitoyltransferase, long chain base subunit 2 (SPTLC2), SPHK2, delta(4)-desaturase sphingolipid 1 (Degs1), and ceramide synthase 4 (CerS4)] and 8 sphingolipid metabolites (including ceramides, sphingol, sphingomyelin, and glycosphingolipid) expressed abnormally (P<0.05) compared with those in the healthy skin. The molecular docking results indicated that the binding energy between the active components (quercetin, kaempferol, and luteolin) in KXJD and key proteins involved in sphingolipid metabolism was less than-8 kal·mol-1. Further experimental verification showed elevated expression levels of SPHK2, S1P, and MCP-1 in psoriatic skin compared with healthy skin (P<0.05), and KXJD down-regulated the expression levels of SPHK2, S1P, and MCP-1 compared with the model group (P<0.05). ConclusionThis study indicates that there is an imbalance in sphingolipid metabolism in psoriatic skin lesions. KXJD may reduce psoriasis-like lesions in mice by regulating sphingolipid metabolism via the SPHK2/S1P/MCP-1 pathway.
8.Exploring Regulatory Effect of Kaixuan Jiedu Core Prescription on SPHK2/S1P/MCP-1 Pathway in Psoriasis-like Mouse Model Based on Sphingolipid Metabolism
Yeping QIN ; Wenhui LIU ; Dan DAI ; Jia XU ; Chong LI ; Bin YANG ; Ping SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):60-68
ObjectiveTo explore the effects of Kaixuan Jiedu core prescription (KXJD) on sphingolipid metabolism in the mouse model of imiquimod-induced psoriasis-like skin lesions. MethodsThirty-seven male C57BL/6J mice were randomly assigned into five groups: healthy control (n=11), model (n=11), methotrexate (MTX, n=5), low-dose (15.21 g·kg-1) KXJD (n=5), and high-dose (30.42 g·kg-1) KXJD (n=5). Psoriasis-like skin lesions were induced in mice with 62.5 mg 5% imiquimod cream applied on the back. The KXJD groups and MTX group were treated with 0.2 mL corresponding decoction and MTX, respectively, by gavage daily, while the other groups were given an equal volume of normal saline by the same way. After 5 days of treatment, back skin lesions were collected. Firstly, healthy control and model mice were selected for tandem mass tag (TMT) quantitative proteomics (control vs model=3 vs 3) and targeted lipid metabolomics (control vs model=11 vs 11). Then, the binding degree between core components and target proteins was predicted via network pharmacology and molecular docking. Finally, an animal experiment was performed to decipher the specific regulation mechanism of KXJD on sphingolipid metabolism. Immunohistochemistry was employed to determine the expression level of sphingosine-1-phosphate (S1P), and Western blot was employed to determine the expression levels of sphingosine kinase 2 (SPHK2) and monocyte chemotactic protein-1 (MCP-1). ResultsTMT proteomics and targeted lipid metabolomics suggested that sphingolipid metabolism was active in the psoriatic skin, and key proteases [serine palmitoyltransferase, long chain base subunit 2 (SPTLC2), SPHK2, delta(4)-desaturase sphingolipid 1 (Degs1), and ceramide synthase 4 (CerS4)] and 8 sphingolipid metabolites (including ceramides, sphingol, sphingomyelin, and glycosphingolipid) expressed abnormally (P<0.05) compared with those in the healthy skin. The molecular docking results indicated that the binding energy between the active components (quercetin, kaempferol, and luteolin) in KXJD and key proteins involved in sphingolipid metabolism was less than-8 kal·mol-1. Further experimental verification showed elevated expression levels of SPHK2, S1P, and MCP-1 in psoriatic skin compared with healthy skin (P<0.05), and KXJD down-regulated the expression levels of SPHK2, S1P, and MCP-1 compared with the model group (P<0.05). ConclusionThis study indicates that there is an imbalance in sphingolipid metabolism in psoriatic skin lesions. KXJD may reduce psoriasis-like lesions in mice by regulating sphingolipid metabolism via the SPHK2/S1P/MCP-1 pathway.
9.Investigation of latent tuberculosis infection among the elderly in rural areas of Changxing County, Zhejiang Province
Jian ZHANG ; Yufang SONG ; Feilin REN ; Xuejing LI ; Jiasheng QIN ; Bin SHAO
Shanghai Journal of Preventive Medicine 2025;37(6):503-506
ObjectiveTo investigate the current status of latent tuberculosis infection (LTBI) among the elderly population in rural areas of Changxing County, Zhejiang Province, and to provide an evidence for the development of LTBI prevention and control measures. MethodsBetween January and May 2024, elderly individuals participating in urban and rural residents’ health checkups were screened for Mycobacterium tuberculosis infection using a domestically produced interferon-γ release assay (IGRA) kit. Individuals tested positive by IGRA but without active tuberculosis were classified as LTBI cases. The prevalence of LTBI among the participants was subsequently analyzed. ResultsAmong the 6 765 subjects, 637 tested positive by IGRA, including one identified active tuberculosis patient, resulting in a LTBI prevalence rate of 9.40%. There was a statistically significant difference in positivity rates across different IGRA methodologies (χ2=35.530, P<0.001). Higher LTBI rate was observed in males, individuals with a history of diabetes mellitus, and those with a history of pulmonary tuberculosis, exhibiting statistically significant differences (χ2=32.401, P<0.001; χ2=5.789, P=0.020; χ2=39.248, P<0.001, respectively.) No statistically significant difference in LTBI rate was found across different age groups (χ2=0.238, P=0.971). ConclusionThe prevalence of LTBI among the elderly rural residents in Changxing County is relatively low. Male, individuals with a history of diabetes mellitus, and those with a history of pulmonary tuberculosis have an increased risk of LTBI, warranting targeted risk monitoring and timely interventions.
10.Relationship Between Gastroesophageal Reflux Disease-Related Symptoms and Clinicopathologic Characteristics and Long-Term Survival of Patients with Esophageal Adenocarcinoma in China
Kan ZHONG ; Xin SONG ; Ran WANG ; Mengxia WEI ; Xueke ZHAO ; Lei MA ; Quanxiao XU ; Jianwei KU ; Lingling LEI ; Wenli HAN ; Ruihua XU ; Jin HUANG ; Zongmin FAN ; Xuena HAN ; Wei GUO ; Xianzeng WANG ; Fuqiang QIN ; Aili LI ; Hong LUO ; Bei LI ; Lidong WANG
Cancer Research on Prevention and Treatment 2025;52(8):661-665
Objective To investigatethe relationship between gastroesophageal reflux disease (GERD) symptoms and clinicopathological characteristics, p53 expression, and survival of Chinese patients with esophageal adenocarcinoma. Methods A total of

Result Analysis
Print
Save
E-mail