1.Predicting Postoperative Motor Function in High-risk Glioma Based on The Morphology Change of Motor Fiber Tracts
Qiang MA ; Song-Lin YU ; Chu-Yue ZHAO ; Xi-Jie WANG ; Song LIN ; Zhen-Tao ZUO ; Tao YU
Progress in Biochemistry and Biophysics 2025;52(4):1018-1026
ObjectiveGliomas in the motor functional area can damage the corticospinal tract (CST), leading to motor dysfunction. Currently, there is a lack of unified methods for evaluating the extent of CST damage, especially in patients with high surgical risk where the minimum distance from the lesion to the CST is less than 10 mm. This study aims to further clarify the classification method and clinical significance of CST morphological changes in these patients. MethodsThis retrospective study analyzed 109 high-risk functional area glioma patients who underwent neurosurgical treatment with preoperative diffusion tensor imaging (DTI) imaging and intraoperative neurostimulation guidance between 2014 and 2024. All patients had a lesion-to-tract distance (LTD) of less than 10 mm between the CST and the lesion. Preoperative DTI evaluation of CST involvement-induced morphological changes were reviewed. Patients were divided into 3 groups: 17 cases (15.6%) with symmetric CST morphology compared to the healthy side (CST symmetry), 48 cases (44.0%) with significant CST morphology changes compared to the healthy side (CST deformation), and 44 cases (40.4%) with CST overlap with the tumor (CST overlap). Then we classified patients according to preoperative assessment of tumor-induced morphological changes, and analyze postoperative motor function for each category. ResultsPostoperative pathology showed a significantly higher proportion of high-grade gliomas (HGG) in the CST overlap group compared to the other two groups (P=0.001). Logistic regression analysis showed that CST overlap was a predictor of HGG (P=0.000). The rate of total tumor resection in the CST deformation group and overlap group was lower than in the CST symmetric group (P=0.008). There was a total of 41 postoperative hemiplegic patients, with 4 cases (23.5%) in the CST symmetric group, 11 cases (22.9%) in the CST deformation group, and 26 cases (59.1%) in the CST overlap group. CST overlap with the tumor predicted postoperative hemiplegia (P=0.016). Two-way ANOVA analysis of the affected/healthy side and CST morphology groups showed significant main effects of CST grouping and healthy-affected side (P=0.017 and P=0.010), with no significant interaction (P=0.31). The fractional anisotropy (FA) value in the CST overlap group and the affected side was lower. A decrease in the FA value on the affected side predicted postoperative hemiplegia (sensitivity 69.2%, specificity 71.9%). ConclusionWe have established a method to predict postoperative hemiplegia in high-risk motor functional area glioma patients based on preoperative CST morphological changes. CST overlap leads to a decrease in CST FA values. This method can be used for precise patient management and aid in accurate preoperative surgical planning.
2.Strategizing data compliance in intelligent healthcare: A four-step solution.
Xuejiao SONG ; Xiao LIU ; Xuelai YANG ; Chaozeng SI ; Xianbo ZUO ; Jingjing HE ; Yong CUI
Chinese Medical Journal 2025;138(10):1254-1256
4.Decoding the immune microenvironment of secondary chronic myelomonocytic leukemia due to diffuse large B-cell lymphoma with CD19 CAR-T failure by single-cell RNA-sequencing.
Xudong LI ; Hong HUANG ; Fang WANG ; Mengjia LI ; Binglei ZHANG ; Jianxiang SHI ; Yuke LIU ; Mengya GAO ; Mingxia SUN ; Haixia CAO ; Danfeng ZHANG ; Na SHEN ; Weijie CAO ; Zhilei BIAN ; Haizhou XING ; Wei LI ; Linping XU ; Shiyu ZUO ; Yongping SONG
Chinese Medical Journal 2025;138(15):1866-1881
BACKGROUND:
Several studies have demonstrated the occurrence of secondary tumors as a rare but significant complication of chimeric antigen receptor T (CAR-T) cell therapy, underscoring the need for a detailed investigation. Given the limited variety of secondary tumor types reported to date, a comprehensive characterization of the various secondary tumors arising after CAR-T therapy is essential to understand the associated risks and to define the role of the immune microenvironment in malignant transformation. This study aims to characterize the immune microenvironment of a newly identified secondary tumor post-CAR-T therapy, to clarify its pathogenesis and potential therapeutic targets.
METHODS:
In this study, the bone marrow (BM) samples were collected by aspiration from the primary and secondary tumors before and after CD19 CAR-T treatment. The CD45 + BM cells were enriched with human CD45 microbeads. The CD45 + cells were then sent for 10× genomics single-cell RNA sequencing (scRNA-seq) to identify cell populations. The Cell Ranger pipeline and CellChat were used for detailed analysis.
RESULTS:
In this study, a rare type of secondary chronic myelomonocytic leukemia (CMML) were reported in a patient with diffuse large B-cell lymphoma (DLBCL) who had previously received CD19 CAR-T therapy. The scRNA-seq analysis revealed increased inflammatory cytokines, chemokines, and an immunosuppressive state of monocytes/macrophages, which may impair cytotoxic activity in both T and natural killer (NK) cells in secondary CMML before treatment. In contrast, their cytotoxicity was restored in secondary CMML after treatment.
CONCLUSIONS
This finding delineates a previously unrecognized type of secondary tumor, CMML, after CAR-T therapy and provide a framework for defining the immune microenvironment of secondary tumor occurrence after CAR-T therapy. In addition, the results provide a rationale for targeting macrophages to improve treatment strategies for CMML treatment.
Humans
;
Lymphoma, Large B-Cell, Diffuse/therapy*
;
Tumor Microenvironment/genetics*
;
Antigens, CD19/metabolism*
;
Leukemia, Myelomonocytic, Chronic/genetics*
;
Immunotherapy, Adoptive/adverse effects*
;
Male
;
Single-Cell Analysis/methods*
;
Female
;
Sequence Analysis, RNA/methods*
;
Receptors, Chimeric Antigen
;
Middle Aged
5.Zhiwei Fuwei Pills regulate miRNA-21/Bcl-2 pathway to improve mitochondrial apoptosis in rats with precancerous lesions of gastric cancer.
Jiao-Jiao ZUO ; Rui-Ping SONG ; Peng-Cheng DOU ; Xin-Yi CHEN ; Zhuang-Zhuang FENG ; Jin SHU
China Journal of Chinese Materia Medica 2025;50(15):4342-4351
This study aimed to investigate the effects of Zhiwei Fuwei Pills on mitochondrial apoptosis in the rat model of precancerous lesions of gastric cancer(PLGC) based on the microRNA-21(miRNA-21)/B-cell lymphoma-2(Bcl-2) signaling pathway. Eighty-five 5-week-old male SPF-grade SD rats were selected, of which 75 were fed with N-methyl-N'-nitro-N-nitrosoguanidine(MNNG) for multifactorial modeling, and the PLGC model was established after 26 weeks. The rats were randomly grouped as follows: model, folic acid(0.002 g·kg~(-1)), low-dose(0.42 g·kg~(-1)) Zhiwei Fuwei Pills, medium-dose(0.84 g·kg~(-1)) Zhiwei Fuwei Pills, and high-dose(1.67 g·kg~(-1)) Zhiwei Fuwei Pills, with 15 rats in each group. Additionally, 10 rats were assigned to a blank group and administrated with an equivalent volume of normal saline by gavage. After four weeks of continuous drug administration, the gastric mucosal tissue was collected. Hematoxylin-eosin(HE) staining was performed to reveal the pathological changes in the gastric mucosa. Terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL) was employed to detect apoptosis in gastric mucosal epithelial cells. RT-PCR was adopted to determine the mRNA levels of miRNA-21, phosphatase and tensin homolog(PTEN), Bcl-2, Bcl-2-associated X protein(Bax), and cysteinyl aspartate-specific protease 3(caspase-3). Western blot was employed to determine the protein levels of PTEN, Bcl-2, Bax, and caspase-3. Immunohistochemistry(IHC) was used to detect the positive expression of PTEN, Bcl-2, and Bax in the gastric mucosal tissue. Transmission electron microscopy(TEM) was employed to observe the morphological and structural changes in mitochondria. The results showed that compared with model group, the drug administration groups showed alleviated pathological changes, with increased apoptotic cells, down-regulated mRNA levels of miRNA-21 and Bcl-2, up-regulated mRNA and protein levels of PTEN, Bax, and caspase-3, and down-regulated protein level of Bcl-2. In addition, the drug administration groups exhibited mitochondrial swelling and rupture and reduction of cristae, which indicated mitochondrial apoptosis. These findings suggest that Zhiwei Fuwei Pills can effectively improve mitochondrial apoptosis in PLGC cells by regulating the miRNA-21/Bcl-2 signaling pathway.
Animals
;
MicroRNAs/metabolism*
;
Male
;
Apoptosis/drug effects*
;
Stomach Neoplasms/physiopathology*
;
Proto-Oncogene Proteins c-bcl-2/genetics*
;
Rats
;
Rats, Sprague-Dawley
;
Drugs, Chinese Herbal/administration & dosage*
;
Mitochondria/genetics*
;
Signal Transduction/drug effects*
;
Precancerous Conditions/drug therapy*
;
Humans
;
PTEN Phosphohydrolase/genetics*
6.Protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on a yorkshire model of brain injury after traumatic blood loss.
Xiang-Yu SONG ; Yang-Hui DONG ; Zhi-Bo JIA ; Lei-Jia CHEN ; Meng-Yi CUI ; Yan-Jun GUAN ; Bo-Yao YANG ; Si-Ce WANG ; Sheng-Feng CHEN ; Peng-Kai LI ; Heng CHEN ; Hao-Chen ZUO ; Zhan-Cheng YANG ; Wen-Jing XU ; Ya-Qun ZHAO ; Jiang PENG
Chinese Journal of Traumatology 2025;28(6):469-476
PURPOSE:
To investigate the protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on ischemic hypoxic injury of yorkshire brain tissue caused by traumatic blood loss.
METHODS:
This article performed a random controlled trial. Brain tissue of 7 yorkshire was selected and divided into the sub-low temperature anterograde machine perfusion group (n = 4) and the blank control group (n = 3) using the random number table method. A yorkshire model of brain tissue injury induced by traumatic blood loss was established. Firstly, the perfusion temperature and blood oxygen saturation were monitored in real-time during the perfusion process. The number of red blood cells, hemoglobin content, NA+, K+, and Ca2+ ions concentrations and pH of the perfusate were detected. Following perfusion, we specifically examined the parietal lobe to assess its water content. The prefrontal cortex and hippocampus were then dissected for histological evaluation, allowing us to investigate potential regional differences in tissue injury. The blank control group was sampled directly before perfusion. All statistical analyses and graphs were performed using GraphPad Prism 8.0 Student t-test. All tests were two-sided, and p value of less than 0.05 was considered to indicate statistical significance.
RESULTS:
The contents of red blood cells and hemoglobin during perfusion were maintained at normal levels but more red blood cells were destroyed 3 h after the perfusion. The blood oxygen saturation of the perfusion group was maintained at 95% - 98%. NA+ and K+ concentrations were normal most of the time during perfusion but increased significantly at about 4 h. The Ca2+ concentration remained within the normal range at each period. Glucose levels were slightly higher than the baseline level. The pH of the perfusion solution was slightly lower at the beginning of perfusion, and then gradually increased to the normal level. The water content of brain tissue in the sub-low and docile perfusion group was 78.95% ± 0.39%, which was significantly higher than that in the control group (75.27% ± 0.55%, t = 10.49, p < 0.001), and the difference was statistically significant. Compared with the blank control group, the structure and morphology of pyramidal neurons in the prefrontal cortex and CA1 region of the hippocampal gyrus were similar, and their integrity was better. The structural integrity of granulosa neurons was destroyed and cell edema increased in the perfusion group compared with the blank control group. Immunofluorescence staining for glail fibrillary acidic protein and Iba1, markers of glial cells, revealed well-preserved cell structures in the perfusion group. While there were indications of abnormal cellular activity, the analysis showed no significant difference in axon thickness or integrity compared to the 1-h blank control group.
CONCLUSIONS
Mild hypothermic machine perfusion can improve ischemia and hypoxia injury of yorkshire brain tissue caused by traumatic blood loss and delay the necrosis and apoptosis of yorkshire brain tissue by continuous oxygen supply, maintaining ion homeostasis and reducing tissue metabolism level.
Animals
;
Perfusion/methods*
;
Disease Models, Animal
;
Brain Injuries/etiology*
;
Swine
;
Male
;
Hypothermia, Induced/methods*
7.Cerebral endothelial 3-mercaptopyruvate sulfurtransferase improves ischemia-induced cognitive impairment via interacting with protein phosphatase 2A.
Li ZHU ; Yi HUANG ; Jing JIN ; Rongjun ZOU ; Rui ZUO ; Yong LUO ; Ziqing SONG ; Linfeng DAI ; Minyi ZHANG ; Qiuhe CHEN ; Yunting WANG ; Wei WANG ; Rongrong HE ; Yang CHEN
Acta Pharmaceutica Sinica B 2025;15(1):314-330
The catalytic activity of 3-mercaptopyruvate (3MP) sulfurtransferase (MPST) converts 3MP to hydrogen sulfide (H2S). However, the regulatory mechanisms governing MPST and its impact on the brain remain largely unexplored. Our study reveals the neuroprotective role of endothelial MPST-generated H2S, regulated by protein phosphatase 2A (PP2A). Bioinformatics analysis and RNA sequencing demonstrated that endothelial PP2A is associated with neurodegenerative disease pathways. Cerebral ischemic mice exhibited significant inactivation of endothelial PP2A, evidenced by the reduction of PP2Acα in the brain endothelium. Mice with endothelium-specific null PP2A (PP2AEC-cKO) exhibited neuronal loss, cognitive dysfunction, and long-term potentiation deficits. Postnatal inactivation of endothelial PP2A also contributes to cognitive dysfunction and neuronal loss. However, regaining endothelial PP2A activity by overexpressing Ppp2ca rescued neuronal dysfunction. Mechanistically, PP2A deficiency is intricately linked to the MPST-H2S signaling pathway. A robust reduction in endothelial MPST-dependent H2S production followed PP2A deficiency. Exogenous H2S treatment and AAV-mediated overexpression of MPST in brain endothelial cells significantly mitigated neuronal dysfunction in PP2AEC-cKO mice. Furthermore, PP2A deficiency promotes an increase in calcium influx and calpain2 phosphorylation, subsequently leading to MPST degradation. The PP2A activator (FTY720) and MPST activator (3MP sodium) both remarkably restored endothelial MPST-dependent H2S production, subsequently rescuing ischemia-induced neurological deficits. In conclusion, our study demonstrates that endothelial PP2A deficiency leads to MPST degradation by activating calpain2, thus damaging neuronal function.
8.Bacteroi des fragilis-derived succinic acid promotes the degradation of uric acid by inhibiting hepatic AMPD2: Insight into how plant-based berberine ameliorates hyperuricemia.
Libin PAN ; Ru FENG ; Jiachun HU ; Hang YU ; Qian TONG ; Xinyu YANG ; Jianye SONG ; Hui XU ; Mengliang YE ; Zhengwei ZHANG ; Jie FU ; Haojian ZHANG ; Jinyue LU ; Zhao ZHAI ; Jingyue WANG ; Yi ZHAO ; Hengtong ZUO ; Xiang HUI ; Jiandong JIANG ; Yan WANG
Acta Pharmaceutica Sinica B 2025;15(10):5244-5260
In recent decades, the prevalence of hyperuricemia and gout has increased dramatically due to lifestyle changes. The drugs currently recommended for hyperuricemia are associated with adverse reactions that limit their clinical use. In this study, we report that berberine (BBR) is an effective drug candidate for the treatment of hyperuricemia, with its mechanism potentially involving the modulation of gut microbiota and its metabolite, succinic acid. BBR has demonstrated good therapeutic effects in both acute and chronic animal models of hyperuricemia. In a clinical trial, oral administration of BBR for 6 months reduced blood uric acid levels in 22 participants by modulating the gut microbiota, which led to an increase in the abundance of Bacteroides and a decrease in Clostridium sensu stricto_1. Furthermore, Bacteroides fragilis was transplanted into ICR mice, and the results showed that Bacteroides fragilis exerted a therapeutic effect on uric acid similar to that of BBR. Notably, succinic acid, a metabolite of Bacteroides, significantly reduced uric acid levels. Subsequent cell and animal experiments revealed that the intestinal metabolite, succinic acid, regulated the upstream uric acid synthesis pathway in the liver by inhibiting adenosine monophosphate deaminase 2 (AMPD2), an enzyme responsible for converting adenosine monophosphate (AMP) to inosine monophosphate (IMP). This inhibition resulted in a decrease in IMP levels and an increase in phosphate levels. The reduction in IMP led to a decreased downstream production of hypoxanthine, xanthine, and uric acid. BBR also demonstrated excellent renoprotective effects, improving nephropathy associated with hyperuricemia. In summary, BBR has the potential to be an effective treatment for hyperuricemia through the gut-liver axis.
9.A novel feedback loop: CELF1/circ-CELF1/BRPF3/KAT7 in cardiac fibrosis.
Yuan JIANG ; Bowen ZHANG ; Bo ZHANG ; Xinhua SONG ; Xiangyu WANG ; Wei ZENG ; Liyang ZUO ; Xinqi LIU ; Zheng DONG ; Wenzheng CHENG ; Yang QIAO ; Saidi JIN ; Dongni JI ; Xiaofei GUO ; Rong ZHANG ; Xieyang GONG ; Lihua SUN ; Lina XUAN ; Berezhnova Tatjana ALEXANDROVNA ; Xiaoxiang GUAN ; Mingyu ZHANG ; Baofeng YANG ; Chaoqian XU
Acta Pharmaceutica Sinica B 2025;15(10):5192-5211
Cardiac fibrosis is characterized by an elevated amount of extracellular matrix (ECM) within the heart. However, the persistence of cardiac fibrosis ultimately diminishes contractility and precipitates cardiac dysfunction. Circular RNAs (circRNAs) are emerging as important regulators of cardiac fibrosis. Here, we elucidate the functional role of a specific circular RNA CELF1 in cardiac fibrosis and delineate a novel feedback loop mechanism. Functionally, circ-CELF1 was involved in enhancing fibrosis-related markers' expression and promoting the proliferation of cardiac fibroblasts (CFs), thereby exacerbating cardiac fibrosis. Mechanistically, circ-CELF1 reduced the ubiquitination-degradation rate of BRPF3, leading to an elevation of BRPF3 protein levels. Additionally, BRPF3 acted as a modular scaffold for the recruitment of histone acetyltransferase KAT7 to facilitate the induction of H3K14 acetylation within the promoters of the Celf1 gene. Thus, the transcription of Celf1 was dramatically activated, thereby inhibiting the subsequent response of their downstream target gene Smad7 expression to promote cardiac fibrosis. Moreover, Celf1 further promoted Celf1 pre-mRNA transcription and back-splicing, thereby establishing a feedback loop for circ-CELF1 production. Consequently, a novel feedback loop involving CELF1/circ-CELF1/BRPF3/KAT7 was established, suggesting that circ-CELF1 may serve as a potential novel therapeutic target for cardiac fibrosis.
10.GPSM2 is highly expressed in gastric cancer to affect patient prognosis by promoting tumor cell proliferation.
Xue SONG ; Yue CHEN ; Min ZHANG ; Nuo ZHANG ; Lugen ZUO ; Jing LI ; Zhijun GENG ; Xiaofeng ZHANG ; Yueyue WANG ; Lian WANG ; Jianguo HU
Journal of Southern Medical University 2025;45(2):229-238
OBJECTIVES:
To explore the association between GPSM2 expression level and gastric cancer progression and analyze the functional pathways and action mechanism of GPSM2.
METHODS:
We analyzed GPSM2 expression levels in gastric cancer tumors based on data from the GEPIA database and the clinical data of 109 patients. Public databases enrichment analysis were used to assess the impact of GPSM2 expression level on survival outcomes and the functional pathways and action mechanism of GPSM2. We further observed the effects of GPSM2 knockdown and overexpression on proliferation, migration and apoptosis of MGC803 cells using CCK-8 assay, colony formation assay, flow cytometry and immunoblotting and on the growth of MGC803 cell xenografts in nude mice.
RESULTS:
Bioinformatic analysis and immunohistochemical staining of the clinical specimens both revealed high GPSM2 expressions in gastric cancer (P<0.01). A high GPSM2 expression was significantly correlated with T3-4 stages, N2-3 stages, a carcinoembryonic antigen (CEA) level ≥5 μg/L, and a carbohydrate antigen (CA) 19-9 level ≥37 kU/L (P<0.05). Cox regression analysis identified high GPSM2 expression as an independent risk factor affecting 5-year survival of the patients (P<0.05). Gene ontology (GO) analysis suggested that GPSM2 was involved in cell cycle regulation. In MGC803 cells, GPSM2 overexpression significantly promoted cell proliferation and G1/S transition and xenograft growth in nude mice. KEGG pathway enrichment analysis indicated that GPSM2 executed its biological functions by regulating the p53 signaling pathway, which was confirmed by the results of immunoblotting experiments showing suppression of p53 signaling pathway activity in GPSM2-over expressing MGC803 cells.
CONCLUSIONS
GPSM2 is highly expressed in gastric cancer to affect patient prognosis by promoting tumor cell proliferation and G1/S transition possibly via inhibiting the p53 pathway.
Stomach Neoplasms/metabolism*
;
Humans
;
Cell Proliferation
;
Prognosis
;
Animals
;
Mice, Nude
;
Cell Line, Tumor
;
Mice
;
Apoptosis
;
Tumor Suppressor Protein p53/metabolism*
;
Cell Movement

Result Analysis
Print
Save
E-mail