1.Exploring Chemical Constituent Distribution in Blood/Brain(Hippocampus) and Emotional Regulatory Effect of Raw and Vinegar-processed Products of Citri Reticulatae Pericarpium Viride
Yi BAO ; Yonggui SONG ; Qianmin LI ; Zhifu AI ; Genhua ZHU ; Ming YANG ; Huanhua XU ; Qin ZHENG ; Yiting HUANG ; Zihan GAO ; Dan SU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):189-197
ObjectiveTo investigate the migration and distribution characteristics of chemical constituents in blood and hippocampal tissues before and after vinegar processing of Citri Reticulatae Pericarpium Viride(CRPV), and to explore the potential material basis and mechanisms underlying their regulatory effects on emotional disorders by comparing the effects of raw and vinegar-processed products of CRPV. MethodsUltra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) was employed to characterize and identify the chemical constituents of raw and vinegar-processed products of CRPV extracts, as well as their migrating components in blood and hippocampal tissues after oral administration. Reference standards, databases, and relevant literature were utilized for compound annotation, with data processing performed using PeakView 1.2 software. Seventy male C57BL/6 mice were randomly divided into seven groups, including the blank group, model group, diazepam group(2.5 mg·kg-1), raw CRPV low/high dose groups(0.6, 1.2 g·kg-1), and vinegar-processed CRPV low/high dose groups(0.6, 1.2 g·kg-1), with 10 mice per group. Except for the blank group, all other groups underwent chronic restraint stress(2 h·d-1) for 20 d. Each drug-treated group received oral administration at the predetermined dose starting 10 d after modeling, with a total treatment duration of 10 d. Following model-based drug administration, mice underwent open-field, forced swimming, and elevated plus maze tests. After anesthesia with isoflurane, whole brains were collected from each group of mice, and hippocampi were dissected. Reactive oxygen species(ROS) level in hippocampal tissues was quantified by enzyme-linked immunosorbent assay(ELISA). Hematoxylin-eosin(HE) staining was used to observe hippocampal tissue morphology. Immunofluorescence was performed to detect neuronal nuclei(NeuN) and peroxisome proliferator-activated receptor alpha(PPARα) expressions in hippocampal tissue. Then, pharmacodynamic evaluations were conducted to assess the effects of raw and vinegar-processed CRPV on mood disorders, exploring the potential mechanisms. ResultsVinegar processing caused significant changes in the chemical composition of CRPV, with 18 components showing increased relative content and 35 components showing decreased relative content. The primary changes occurred in flavonoid compounds, including 20 flavonoids, 20 flavonoid glycosides, 3 triterpenes, 3 phenolic acids, 1 alkaloid, and 6 other compounds. Twenty-one components were detected in blood(15 methoxyflavones, 4 flavonoid glycosides, and 2 phenolic acids), with 17 shared between raw and vinegar-processed CRPV. Seven components reached hippocampal tissues(all common to both forms). In regulating emotional disorders, Vinegar-processed CRPV exhibited superior antidepressant-like effects compared to raw products. HE staining revealed that both treatments improved hippocampal neuronal morphology, particularly in the damaged CA1 and CA3 regions. Immunofluorescence and ELISA analyses demonstrated that both raw and vinegar-processed CRPV significantly modulated NeuN and PPARα expressions in hippocampal tissue while alleviating oxidative stress induced by excessive ROS(P<0.05). ConclusionThe chemical composition of CRPV undergoes changes after vinegar processing, but the migrating components in blood and hippocampus are primarily methoxyflavonoids. These components may serve as the potential material basis for activating the PPARα pathway, thereby negatively regulating ROS generation in the hippocampus, reducing oxidative stress, and promoting the development of NeuN-positive neurons. These findings provide experimental evidence for enhancing quality standards, pharmacodynamic material research, and active drug development of raw and vinegar-processed CRPV.
2.Expert consensus on neoadjuvant PD-1 inhibitors for locally advanced oral squamous cell carcinoma (2026)
LI Jinsong ; LIAO Guiqing ; LI Longjiang ; ZHANG Chenping ; SHANG Chenping ; ZHANG Jie ; ZHONG Laiping ; LIU Bing ; CHEN Gang ; WEI Jianhua ; JI Tong ; LI Chunjie ; LIN Lisong ; REN Guoxin ; LI Yi ; SHANG Wei ; HAN Bing ; JIANG Canhua ; ZHANG Sheng ; SONG Ming ; LIU Xuekui ; WANG Anxun ; LIU Shuguang ; CHEN Zhanhong ; WANG Youyuan ; LIN Zhaoyu ; LI Haigang ; DUAN Xiaohui ; YE Ling ; ZHENG Jun ; WANG Jun ; LV Xiaozhi ; ZHU Lijun ; CAO Haotian
Journal of Prevention and Treatment for Stomatological Diseases 2026;34(2):105-118
Oral squamous cell carcinoma (OSCC) is a common head and neck malignancy. Approximately 50% to 60% of patients with OSCC are diagnosed at a locally advanced stage (clinical staging III-IVa). Even with comprehensive and sequential treatment primarily based on surgery, the 5-year overall survival rate remains below 50%, and patients often suffer from postoperative functional impairments such as difficulties with speaking and swallowing. Programmed death receptor-1 (PD-1) inhibitors are increasingly used in the neoadjuvant treatment of locally advanced OSCC and have shown encouraging efficacy. However, clinical practice still faces key challenges, including the definition of indications, optimization of combination regimens, and standards for efficacy evaluation. Based on the latest research advances worldwide and the clinical experience of the expert group, this expert consensus systematically evaluates the application of PD-1 inhibitors in the neoadjuvant treatment of locally advanced OSCC, covering combination strategies, treatment cycles and surgical timing, efficacy assessment, use of biomarkers, management of special populations and immune related adverse events, principles for immunotherapy rechallenge, and function preservation strategies. After multiple rounds of panel discussion and through anonymous voting using the Delphi method, the following consensus statements have been formulated: 1) Neoadjuvant therapy with PD-1 inhibitors can be used preoperatively in patients with locally advanced OSCC. The preferred regimen is a PD-1 inhibitor combined with platinum based chemotherapy, administered for 2-3 cycles. 2) During the efficacy evaluation of neoadjuvant therapy, radiographic assessment should follow the dual criteria of Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 and immune RECIST (iRECIST). After surgery, systematic pathological evaluation of both the primary lesion and regional lymph nodes is required. For combination chemotherapy regimens, PD-L1 expression and combined positive score need not be used as mandatory inclusion or exclusion criteria. 3) For special populations such as the elderly (≥ 70 years), individuals with stable HIV viral load, and carriers of chronic HBV/HCV, PD-1 inhibitors may be used cautiously under the guidance of a multidisciplinary team (MDT), with close monitoring for adverse events. 4) For patients with a poor response to neoadjuvant therapy, continuation of the original treatment regimen is not recommended; the subsequent treatment plan should be adjusted promptly after MDT assessment. Organ transplant recipients and patients with active autoimmune diseases are not recommended to receive neoadjuvant PD-1 inhibitor therapy due to the high risk of immune related activation. Rechallenge is generally not advised for patients who have experienced high risk immune related adverse events such as immune mediated myocarditis, neurotoxicity, or pneumonitis. 5) For patients with a good pathological response, individualized de escalation surgery and function preservation strategies can be explored. This consensus aims to promote the standardized, safe, and precise application of neoadjuvant PD-1 inhibitor strategies in the management of locally advanced OSCC patients.
3.Screening of Antidepressant Active Components from Curcumae Rhizoma and Its Mechanism in Regulating Nrf2/GPX4/GSH Pathway
Yonggui SONG ; Delin DUAN ; Meixizi LAI ; Yali LIU ; Zhifu AI ; Genhua ZHU ; Huanhua XU ; Qin ZHENG ; Ming YANG ; Dan SU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):211-221
ObjectiveTo screen and evaluate the antidepressant compounds of Curcumae Rhizoma, and explore its mechanism of regulating the nuclear factor erythroid 2-related factor 2(Nrf2)/glutathione(GSH) peroxidase 4(GPX4)/GSH pathway from an antioxidant perspective. MethodsThe antioxidant activities in vitro of 11 characteristic components from Curcumae Rhizoma, including curcumol, curgerenone, curdione, curzerene, curcumenol, curcumenone, dehydrocurdione, isocurcumenol, furanodienone, furanodiene and zederone, were detected using 1,1-diphenyl-2-picrylhydrazyl(DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt(ABTS) radical scavenging assays. The depression in Drosophila melanogaster was induced by chronic unpredictable mild stress(CUMS), and W1118 wild-type male D. melanogaster were randomly divided into blank group, model group, curcumol group, curgerenone group, curdione group, curzerene group, curcumenol group,curcumenone group, dehydrocurdione group, isocurcumenol group, furanodienone group, furanodiene group, zederone group and fluoxetine group(10 μmol·L-1). The treatment groups received a dose of 0.1 g·L-1 of 11 characteristic components from Curcumae Rhizoma, while the blank and model groups were administered equivalent volumes of solvent. The sucrose preference test, climbing test and forced swimming test were used to evaluate the behavioral indicators of depression in D. melanogaster. Liquid chromatography-mass spectrometry(LC-MS) was used to detect the levels of 5-hydroxytryptamine(5-HT) and dopamine(DA) in the brain of D. melanogaster, and the entropy weight method was used to comprehensively evaluate neurobehavioral and neurotransmitter indicators, resulting in the identification of the antidepressant active components of Curcumae Rhizoma. In addition, a mouse depression model was established by CUMS, and C57BL/6J mice were randomly divided into blank group, model group, low and high dose groups of curzerene(0.5, 1 mg·kg-1), and fluoxetine group(10 mg·kg-1) to confirm the antidepressant effect of the optimal active ingredient by behavioral analysis. Flow cytometry was used to detect the content of reactive oxygen species(ROS) in the hippocampus of mice from each group. Enzyme-linked immunosorbent assay was used to detect the contents of adenosine triphosphate(ATP), superoxide dismutase(SOD), catalase(CAT) and GSH. Transmission electron microscope(TEM) was used to observe the effect of curzerene on the ultrastructure of mitochondria in hippocampal tissue. Western blot was performed to determine the level of Nrf2 protein, and Nrf2 inhibitor(ML385) was used to verify the relationship between the antidepressant effect of curzerene and regulation of Nrf2. Real time fluorescence quantitative polymerase chain reaction(Real-time PCR) was employed to detect the effect of curzerene on the mRNA expression level of GPX. ResultsIn vitro antioxidant experiments showed that curzerene and curgerenone exhibited the most significant ability to scavenge free radicals, and comprehensive evaluation results of entropy weight method indicated that curzerene stood out as the most promising active component. Compared with the blank group, the model group exhibited a significant decrease in sucrose preference coefficient and the number of times entering the open field center(P<0.01), as well as a significant increase in immobility time in the forced swimming and tail suspension tests(P<0.01), and the ROS content in hippocampus significantly elevated(P<0.01), while the ATP content significantly reduced(P<0.01). In the hippocampal neurons of the model group, mitochondrial cristae were disordered, with vacuolation of the inner membrane and severe damage. Nrf2 protein expression level in the model group was significantly decreased(P<0.05), and the antioxidant enzymes SOD, CAT and GSH contents were also significantly reduced(P<0.05, P<0.01), and the gene expression levels of GPX1, GPX4 and GPX7 were significantly decreased(P<0.01). Compared with the model group, the high-dose group of curzerene showed a significant increase in the sucrose preference coefficient and the number of times entering the open field center(P<0.05), as well as a significant decrease in immobility time in the forced swimming and tail suspension tests(P<0.05, P<0.01). The ROS content in the hippocampus of the high-dose group of curzerene was significantly reduced(P<0.01), while the ATP content was significantly increased(P<0.05). The neuronal mitochondrial damage in the hippocampus of the high-dose group of curzerene was alleviated, and the expression level of Nrf2 protein was significantly increased(P<0.05). The Nrf2 inhibitor ML385 reversed the improvement of curzerene on depressive behaviors in CUMS mice. The GSH content in the hippocampal neurons of the high-dose group of curzerene was significantly increased(P<0.01), while there were no significant differences in SOD and CAT contents. The expression level of GPX4 gene in the hippocampal neurons of the high-dose group of curzerene was significantly increased(P<0.05), while there were no significant differences in other GPX genes. ConclusionCurzerene is the best component with antidepressant activity in Curcumae Rhizoma. It may improve mitochondrial dysfunction to exert its antidepressant effect by regulating Nrf2 and its downstream GPX4/GSH pathway rather than CAT or SOD pathways.
4.Applications of Vaterite in Drug Loading and Controlled Release
Xiao-Hui SONG ; Ming-Yu PAN ; Jian-Feng XU ; Zheng-Yu HUANG ; Qing PAN ; Qing-Ning LI
Progress in Biochemistry and Biophysics 2025;52(1):162-181
Currently, the drug delivery system (DDS) based on nanomaterials has become a hot interdisciplinary research topic. One of the core issues is drug loading and controlled release, in which the key lever is carriers. Vaterite, as an inorganic porous nano-material, is one metastable structure of calcium carbonate, full of micro or nano porous. Recently, vaterite has attracted more and more attention, due to its significant advantages, such as rich resources, easy preparations, low cost, simple loading procedures, good biocompatibility and many other good points. Vaterite, gained from suitable preparation strategies, can not only possess the good drug carrying performance, like high loading capacity and stable loading efficiency, but also improve the drug release ability, showing the better drug delivery effects, such as targeting release, pH sensitive release, photothermal controlled release, magnetic assistant release, optothermal controlled release. At the same time, the vaterite carriers, with good safety itself, can protect proteins, enzymes, or other drugs from degradation or inactivation, help imaging or visualization with loading fluorescent drugs in vitro and in vivo, and play synergistic effects with other therapy approaches, like photodynamic therapy, sonodynamic therapy, and thermochemotherapy. Latterly, some renewed reports in drug loading and controlled release have led to their widespread applications in diverse fields, from cell level to clinical studies. This review introduces the basic characteristics of vaterite and briefly summarizes its research history, followed by synthesis strategies. We subsequently highlight recent developments in drug loading and controlled release, with an emphasis on the advantages, quantity capacity, and comparations. Furthermore, new opportunities for using vaterite in cell level and animal level are detailed. Finally, the possible problems and development trends are discussed.
5.Progress on antisense oligonucleotide in the field of antibacterial therapy
Jia LI ; Xiao-lu HAN ; Shi-yu SONG ; Jin-tao LIN ; Zhi-qiang TANG ; Zeng-ming WANG ; Liang XU ; Ai-ping ZHENG
Acta Pharmaceutica Sinica 2025;60(2):337-347
With the widespread use of antibiotics, drug-resistant bacterial infections have become a significant threat to human health. Finding new antibacterial strategies that can effectively control drug-resistant bacterial infections has become an urgent task. Unlike small molecule drugs that target bacterial proteins, antisense oligonucleotide (ASO) can target genes related to bacterial resistance, pathogenesis, growth, reproduction and biofilm formation. By regulating the expression of these genes, ASO can inhibit or kill bacteria, providing a novel approach for the development of antibacterial drugs. To overcome the challenge of delivering antisense oligonucleotide into bacterial cells, various drug delivery systems have been applied in this field, including cell-penetrating peptides, lipid nanoparticles and inorganic nanoparticles, which have injected new momentum into the development of antisense oligonucleotide in the antibacterial realm. This review summarizes the current development of small nucleic acid drugs, the antibacterial mechanisms, targets, sequences and delivery vectors of antisense oligonucleotide, providing a reference for the research and development of antisense oligonucleotide in the treatment of bacterial infections.
6.Research progress of antifungal drugs from natural sources
Shao-jie CHU ; Yan ZHENG ; Shuang-shuang SU ; Xue-song WU ; Hong YAN ; Shao-xin CHEN ; Hong-bo WANG
Acta Pharmaceutica Sinica 2025;60(1):48-57
As the number of patients with compromised immune function increases and fungal resistance develops, so does the risk of contracting deadly fungi in humans. Both fungi and humans are eukaryotes, so identifying unique targets for antifungal drug development is difficult. In addition, the existing antifungal drugs are limited by toxicity, drug interaction and drug resistance in practical application, which leads to the increasing incidence and fatal rate of fungal infections. Therefore, it is urgent to develop new antifungal drugs. The semi-synthetic technology using microbial fermentation products from natural sources as lead compounds has become the most used method in structural modification of antifungal drugs due to its advantages of few reaction steps and easy operation. This paper will introduce the current status of natural antifungal drugs in clinical use, as well as the latest progress in the research and development of new semi-synthetic antifungal drugs, and summarize their mechanism of action, structural modifications, advantages and disadvantages, so as to provide reference for the subsequent development of new antifungal drugs.
7.Effect of Different Fermentation Conditions on Fungal Community and Chemical Composition of Aurantii Fructus
Zhihong YAN ; Xiumei LIU ; Qiuyan GUAN ; Yonggui SONG ; Zhifu AI ; Genhua ZHU ; Yuhui PING ; Ming YANG ; Qin ZHENG ; Huanhua XU ; Dan SU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):254-262
ObjectiveTo investigate the effects of different fermentation methods and times on the fungal flora and chemical composition of Aurantii Fructus, in order to obtain the optimal fermentation conditions and flora structure, and to ensure the stability and controllability of the fermented varieties. MethodsScanning electron microscopy was used to observe and analyze the colony characteristics on the surface of Aurantii Fructus under different fermentation conditions. Internal transcribed spacer 2(ITS2) high-throughput sequencing, combined with fungal community diversity analysis and fungal community structure analysis, were used to obtain the fungal flora microbial categories of Aurantii Fructus under the conditions of traditional pressure-shelf fermentation and non-pressure-shelf natural fermentation for 7, 14, 21 d(numbered Y1-Y3 for the former, and numbered F1-F3 for the latter), respectively. At the same time, the chemical components in the fermentation process were detected by ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS), combined with principal component analysis(PCA), partial least squares-discriminant analysis(PLS-DA) and compound retention time, parent ions, characteristic fragment ions and other information, the differential compounds between the different fermentation samples were screened and identified. ResultsThe analysis of fungal community diversity showed that the dominant flora did not change at different fermentation time points in the traditional pressure-shelf fermentation method, while in the non-pressure-shelf natural fermentation method, there was a significant difference with the fermentation process, and at the genus level, the dominant genus of samples Y1, Y2, Y3 and F2 was Aspergillus, while the dominant genera of samples F1 and F3 were both Rhizopus. This indicated that the microbial growth environment provided by the traditional fermentation method was more stable, and the microbial community structure was more stable, which was more conducive to the stable and controllable fermentation process and fermented products. A total of 155 compounds were identified by compositional analysis, including 70 flavonoids, 38 coumarins, 10 alkaloids, 34 organic acids and 3 other compounds. After fermentation, two new components of ribalinine and pranferin were produced. Different fermentation conditions also brought about differences in chemical composition, multivariate statistical analysis obtained 26 differential compounds under two different fermentation methods, mainly including flavonoids, organic acids and coumarins. Comprehensively, the microbial community structure of samples fermented by the traditional pressure-shelf method of Aurantii Fructus for 14 d was stable, the species richness was high and the overall content of differential compounds was high, which was the optimal processing condition. ConclusionCompared with non-pressure-shelf natural fermentation, the traditional method has obvious advantages in terms of the stability of the microbial community structure and the content of chemical compounds, and the optimal condition is 14 days of fermentation. This study is helpful to promote the quality stability and fermentation bioavailability of fermented products of Aurantii Fructus, as well as to provide an experimental basis for the further improvement of the quality control methods of this variety.
8.Effect of Different Fermentation Conditions on Fungal Community and Chemical Composition of Aurantii Fructus
Zhihong YAN ; Xiumei LIU ; Qiuyan GUAN ; Yonggui SONG ; Zhifu AI ; Genhua ZHU ; Yuhui PING ; Ming YANG ; Qin ZHENG ; Huanhua XU ; Dan SU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):254-262
ObjectiveTo investigate the effects of different fermentation methods and times on the fungal flora and chemical composition of Aurantii Fructus, in order to obtain the optimal fermentation conditions and flora structure, and to ensure the stability and controllability of the fermented varieties. MethodsScanning electron microscopy was used to observe and analyze the colony characteristics on the surface of Aurantii Fructus under different fermentation conditions. Internal transcribed spacer 2(ITS2) high-throughput sequencing, combined with fungal community diversity analysis and fungal community structure analysis, were used to obtain the fungal flora microbial categories of Aurantii Fructus under the conditions of traditional pressure-shelf fermentation and non-pressure-shelf natural fermentation for 7, 14, 21 d(numbered Y1-Y3 for the former, and numbered F1-F3 for the latter), respectively. At the same time, the chemical components in the fermentation process were detected by ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS), combined with principal component analysis(PCA), partial least squares-discriminant analysis(PLS-DA) and compound retention time, parent ions, characteristic fragment ions and other information, the differential compounds between the different fermentation samples were screened and identified. ResultsThe analysis of fungal community diversity showed that the dominant flora did not change at different fermentation time points in the traditional pressure-shelf fermentation method, while in the non-pressure-shelf natural fermentation method, there was a significant difference with the fermentation process, and at the genus level, the dominant genus of samples Y1, Y2, Y3 and F2 was Aspergillus, while the dominant genera of samples F1 and F3 were both Rhizopus. This indicated that the microbial growth environment provided by the traditional fermentation method was more stable, and the microbial community structure was more stable, which was more conducive to the stable and controllable fermentation process and fermented products. A total of 155 compounds were identified by compositional analysis, including 70 flavonoids, 38 coumarins, 10 alkaloids, 34 organic acids and 3 other compounds. After fermentation, two new components of ribalinine and pranferin were produced. Different fermentation conditions also brought about differences in chemical composition, multivariate statistical analysis obtained 26 differential compounds under two different fermentation methods, mainly including flavonoids, organic acids and coumarins. Comprehensively, the microbial community structure of samples fermented by the traditional pressure-shelf method of Aurantii Fructus for 14 d was stable, the species richness was high and the overall content of differential compounds was high, which was the optimal processing condition. ConclusionCompared with non-pressure-shelf natural fermentation, the traditional method has obvious advantages in terms of the stability of the microbial community structure and the content of chemical compounds, and the optimal condition is 14 days of fermentation. This study is helpful to promote the quality stability and fermentation bioavailability of fermented products of Aurantii Fructus, as well as to provide an experimental basis for the further improvement of the quality control methods of this variety.
9.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
10.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.


Result Analysis
Print
Save
E-mail