1.Progress in the study of anti-inflammatory active components with anti-inflammatory effects and mechanisms in Caragana Fabr.
Yu-mei MA ; Ju-yuan LUO ; Tao CHEN ; Hong-mei LI ; Cheng SHEN ; Shuo WANG ; Zhi-bo SONG ; Yu-lin LI
Acta Pharmaceutica Sinica 2025;60(1):58-71
The plants of the genus
2.PDGF-C: an Emerging Target in The Treatment of Organ Fibrosis
Chao YANG ; Zi-Yi SONG ; Chang-Xin WANG ; Yuan-Yuan KUANG ; Yi-Jing CHENG ; Ke-Xin REN ; Xue LI ; Yan LIN
Progress in Biochemistry and Biophysics 2025;52(5):1059-1069
Fibrosis, the pathological scarring of vital organs, is a severe and often irreversible condition that leads to progressive organ dysfunction. It is particularly pronounced in organs like the liver, kidneys, lungs, and heart. Despite its clinical significance, the full understanding of its etiology and complex pathogenesis remains incomplete, posing substantial challenges to diagnosing, treating, and preventing the progression of fibrosis. Among the various molecular players involved, platelet-derived growth factor-C (PDGF-C) has emerged as a crucial factor in fibrotic diseases, contributing to the pathological transformation of tissues in several key organs. PDGF-C is a member of the PDGFs family of growth factors and is synthesized and secreted by various cell types, including fibroblasts, smooth muscle cells, and endothelial cells. It acts through both autocrine and paracrine mechanisms, exerting its biological effects by binding to and activating the PDGF receptors (PDGFRs), specifically PDGFRα and PDGFRβ. This binding triggers multiple intracellular signaling pathways, such as JAK/STAT, PI3K/AKT and Ras-MAPK pathways. which are integral to the regulation of cell proliferation, survival, migration, and fibrosis. Notably, PDGF-C has been shown to promote the proliferation and migration of fibroblasts, key effector cells in the fibrotic process, thus accelerating the accumulation of extracellular matrix components and the formation of fibrotic tissue. Numerous studies have documented an upregulation of PDGF-C expression in various fibrotic diseases, suggesting its significant role in the initiation and progression of fibrosis. For instance, in liver fibrosis, PDGF-C stimulates hepatic stellate cell activation, contributing to the excessive deposition of collagen and other extracellular matrix proteins. Similarly, in pulmonary fibrosis, PDGF-C enhances the migration of fibroblasts into the damaged areas of lungs, thereby worsening the pathological process. Such findings highlight the pivotal role of PDGF-C in fibrotic diseases and underscore its potential as a therapeutic target for these conditions. Given its central role in the pathogenesis of fibrosis, PDGF-C has become an attractive target for therapeutic intervention. Several studies have focused on developing inhibitors that block the PDGF-C/PDGFR signaling pathway. These inhibitors aim to reduce fibroblast activation, prevent the excessive accumulation of extracellular matrix components, and halt the progression of fibrosis. Preclinical studies have demonstrated the efficacy of such inhibitors in animal models of liver, kidney, and lung fibrosis, with promising results in reducing fibrotic lesions and improving organ function. Furthermore, several clinical inhibitors, such as Olaratumab and Seralutinib, are ongoing to assess the safety and efficacy of these inhibitors in human patients, offering hope for novel therapeutic options in the treatment of fibrotic diseases. In conclusion, PDGF-C plays a critical role in the development and progression of fibrosis in vital organs. Its ability to regulate fibroblast activity and influence key signaling pathways makes it a promising target for therapeutic strategies aiming at combating fibrosis. Ongoing research into the regulation of PDGF-C expression and the development of PDGF-C/PDGFR inhibitors holds the potential to offer new insights and approaches for the diagnosis, treatment, and prevention of fibrotic diseases. Ultimately, these efforts may lead to the development of more effective and targeted therapies that can mitigate the impact of fibrosis and improve patient outcomes.
3.Utility of the China-PAR Score in predicting secondary events among patients undergoing percutaneous coronary intervention.
Jianxin LI ; Xueyan ZHAO ; Jingjing XU ; Pei ZHU ; Ying SONG ; Yan CHEN ; Lin JIANG ; Lijian GAO ; Lei SONG ; Yuejin YANG ; Runlin GAO ; Xiangfeng LU ; Jinqing YUAN
Chinese Medical Journal 2025;138(5):598-600
4.Parkin inhibits iron overload-induced cardiomyocyte ferroptosis by ubiquitinating ACSL4 and modulating PUFA-phospholipids metabolism.
Dandan XIAO ; Wenguang CHANG ; Xiang AO ; Lin YE ; Weiwei WU ; Lin SONG ; Xiaosu YUAN ; Luxin FENG ; Peiyan WANG ; Yu WANG ; Yi JIA ; Xiaopeng TANG ; Jianxun WANG
Acta Pharmaceutica Sinica B 2025;15(3):1589-1607
Iron overload is strongly associated with heart disease. Ferroptosis is a new form of regulated cell death indicated in cardiac ischemia-reperfusion (I/R) injury. However, the specific molecular mechanism of myocardial injury caused by iron overload in the heart is still unclear, and the involvement of ferroptosis in iron overload-induced myocardial injury is not fully understood. In this study, we observed that ferroptosis participated in developing of iron overload and I/R-induced cardiomyopathy. Mechanistically, we discovered that Parkin inhibited iron overload-induced ferroptosis in cardiomyocytes by promoting the ubiquitination of long-chain acyl-CoA synthetase 4 (ACSL4), a crucial protein involved in ferroptosis-related lipid metabolism pathways. Additionally, we identified p53 as a transcription factor that transcriptionally suppressed Parkin expression in iron-overloaded cardiomyocytes, thereby regulating iron overload-induced ferroptosis. In animal studies, cardiac-specific Parkin knockout mice (Myh6-CreER T2 /Parkin fl/fl ) fed a high-iron diet presented more severe myocardial damage, and the high iron levels exacerbated myocardial I/R injury. However, the ferroptosis inhibitor Fer-1 significantly suppressed iron overload-induced ferroptosis and myocardial I/R injury. Moreover, Parkin effectively protected against impaired mitochondrial function and prevented iron overload-induced mitochondrial lipid peroxidation. These findings unveil a novel regulatory pathway involving p53-Parkin-ACSL4 in heart disease by inhibiting of ferroptosis.
5.Association between Per and Polyfluoroalkyl Substance and Abdominal Fat Distribution: A Trait Spectrum Exposure Pattern and Structure-Based Investigation.
Zhi LI ; Shi Lin SHAN ; Chen Yang SONG ; Cheng Zhe TAO ; Hong QIAN ; Qin YUAN ; Yan ZHANG ; Qiao Qiao XU ; Yu Feng QIN ; Yun FAN ; Chun Cheng LU
Biomedical and Environmental Sciences 2025;38(1):3-14
OBJECTIVE:
To investigate the associations between eight serum per- and polyfluoroalkyl substances (PFASs) and regional fat depots, we analyzed the data from the National Health and Nutrition Examination Survey (NHANES) 2011-2018 cycles.
METHODS:
Multiple linear regression models were developed to explore the associations between serum PFAS concentrations and six fat compositions along with a fat distribution score created by summing the concentrations of the six fat compositions. The associations between structurally grouped PFASs and fat distribution were assessed, and a prediction model was developed to estimate the ability of PFAS exposure to predict obesity risk.
RESULTS:
Among females aged 39-59 years, trunk fat mass was positively associated with perfluorooctane sulfonate (PFOS). Higher concentrations of PFOS, perfluorohexane sulfonate (PFHxS), perfluorodecanoate (PFDeA), perfluorononanoate (PFNA), and n-perfluorooctanoate (n-PFOA) were linked to greater visceral adipose tissue in this group. In men, exposure to total perfluoroalkane sulfonates (PFSAs) and long-chain PFSAs was associated with reductions in abdominal fat, while higher abdominal fat in women aged 39-59 years was associated with short-chain PFSAs. The prediction model demonstrated high accuracy, with an area under the curve (AUC) of 0.9925 for predicting obesity risk.
CONCLUSION
PFAS exposure is associated with regional fat distribution, with varying effects based on age, sex, and PFAS structure. The findings highlight the potential role of PFAS exposure in influencing fat depots and obesity risk, with significant implications for public health. The prediction model provides a highly accurate tool for assessing obesity risk related to PFAS exposure.
Humans
;
Fluorocarbons/blood*
;
Female
;
Adult
;
Middle Aged
;
Male
;
Environmental Pollutants/blood*
;
Abdominal Fat
;
Nutrition Surveys
;
Alkanesulfonic Acids/blood*
;
Obesity
;
Environmental Exposure
6.W 18O 49 Crystal and ICG Labeled Macrophage: An Efficient Targeting Vector for Fluorescence Imaging-guided Photothermal Therapy.
Yang BAI ; Guo Qing FENG ; Muskan Saif KHAN ; Qing Bin YANG ; Ting Ting HUA ; Hao Lin GUO ; Yuan LIU ; Bo Wen LI ; Yi Wen WU ; Bin ZHENG ; Nian Song QIAN ; Qing YUAN
Biomedical and Environmental Sciences 2025;38(1):100-105
8.Current status of cognition and skin care behavior in adolescent patients with acne: A survey in China.
Jing TIAN ; Hong SHU ; Qiufang QIAN ; Zhong SHEN ; Chunyu ZHAO ; Li SONG ; Ping LI ; Xiuping HAN ; Hua QIAN ; Jinping CHEN ; Hua WANG ; Lin MA ; Yuan LIANG
Chinese Medical Journal 2024;137(4):476-477
9.Magnesium promotes vascularization and osseointegration in diabetic states.
Linfeng LIU ; Feiyu WANG ; Wei SONG ; Danting ZHANG ; Weimin LIN ; Qi YIN ; Qian WANG ; Hanwen LI ; Quan YUAN ; Shiwen ZHANG
International Journal of Oral Science 2024;16(1):10-10
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues. Magnesium has been proved to promote bone healing under normal conditions. Here, we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status. We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised, with significantly decreased angiogenesis. We then developed Mg-coating implants with hydrothermal synthesis. These implants successfully improved the vascularization and osseointegration in diabetic status. Mechanically, Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1 (Keap1) and the nucleation of nuclear factor erythroid 2-related factor 2 (Nrf2) by up-regulating the expression of sestrin 2 (SESN2) in endothelial cells, thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia. Altogether, our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
Mice
;
Animals
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Magnesium/metabolism*
;
Osseointegration
;
Diabetes Mellitus, Experimental/metabolism*
;
Endothelial Cells/metabolism*
;
NF-E2-Related Factor 2/metabolism*
10.Negative pressure wound therapy promotes autologous skin transplantation by alleviating inflammatory reaction in pa-tients with chronic venous leg ulcer
Xu-Song YUAN ; Jian ZHANG ; Lu XU ; Jin-Rong LIN
Chinese Journal of Current Advances in General Surgery 2024;27(2):134-138
Objective:To investigate the mechanism of inhibiting inflammatory response by negative pressure wound therapy in the chronic venous leg ulcer.Method:The clinical data of 29 patients with chronic VLU treated in Hechuan-Rhine Traditional Chinese Medicine Hospital of Shanghai from June 2018 to December 2021 were collected.According to different treatment meth-ods,the patients were divided into the control group(n=13)and the observation group(n=16).The control group adopted routine varicose vein operations and debridement,routine dressing change was performed on the VLU wound every other day after operation.The observation group adopted debridement and then NPWT on the basis of routine varicose vein operations,the VLU wound was continuously drained with negative pressure for 1 week after operation.IL-1β and IL-18 levels were measured with ELISA.ASC、NLRP3 and Caspase-1 levels were detected with Western blot-ting.The autologous skin transplantation time of the two groups were calculated by survival curve analysis.Results:The inflammatory response was milder in the observation group than in the con-trol group 7 days after operation.The results of ELISA showed that the levels of IL-1 p and IL-18 in the observation group were lower than those in the control group.The results of Western blotting showed that the relative expression levels of ASC、NLRP3 and Caspase-1 in the observation group were lower than those in the control group.The survival curve analysis showed that the autologous skin transplantation time of the observation group was less than the control group.Conclusion:The inflammatory response can be distinctly alleviated by NPWT in the VLU,leading to better condi-tions for autologous skin transplantation within a short period.

Result Analysis
Print
Save
E-mail