1.Research progress of nucleus tractus solitarius involved in central regulation of hypertension.
Yu TIAN ; Na LI ; Yi ZHANG ; Hong-Jie WANG
Acta Physiologica Sinica 2025;77(1):85-94
The nucleus tractus solitarius (NTS) is the primary brain region for receiving and integrating cardiovascular afferent signals. It plays a crucial role in maintaining balance of autonomic nervous system and regulating blood pressure through cardiovascular reflexes. Neurons within the NTS form complex synaptic connections and interact reciprocally with other brain regions. The NTS regulates autonomic nervous system activity and arterial blood pressure through modulating baroreflex, sympathetic nerve activity, renin-angiotensin-aldosterone system, and oxidative stress. Dysfunctions in NTS activity may contribute to hypertension. Understanding the NTS' role in centrally regulating blood pressure and alterations of neurotransmission or signaling pathways in the NTS may provide rationale for new therapeutic strategies of prevention and treatment. This review summarizes the research findings on autonomic nervous system regulation and arterial blood pressure control by NTS, as well as unresolved questions, in order to provide reference for future investigation.
Solitary Nucleus/physiopathology*
;
Hypertension/physiopathology*
;
Humans
;
Animals
;
Autonomic Nervous System/physiopathology*
;
Blood Pressure/physiology*
;
Baroreflex/physiology*
;
Renin-Angiotensin System/physiology*
;
Sympathetic Nervous System/physiology*
2.Activation of Centromedial Amygdala GABAergic Neurons Produces Hypotension in Mice.
Xiaoyi WANG ; Ziteng YUE ; Luo SHI ; Wei HE ; Liuqi SHAO ; Yuhang LIU ; Jinye ZHANG ; Shangyu BI ; Tianjiao DENG ; Fang YUAN ; Sheng WANG
Neuroscience Bulletin 2025;41(5):759-774
The central amygdala (CeA) is a crucial modulator of emotional, behavioral, and autonomic functions, including cardiovascular responses. Despite its importance, the specific circuit by which the CeA modulates blood pressure remains insufficiently explored. Our investigations demonstrate that photostimulation of GABAergic neurons in the centromedial amygdala (CeMGABA), as opposed to those in the centrolateral amygdala (CeL), produces a depressor response in both anesthetized and freely-moving mice. In addition, activation of CeMGABA axonal terminals projecting to the nucleus tractus solitarius (NTS) significantly reduces blood pressure. These CeMGABA neurons form synaptic connections with NTS neurons, allowing for the modulation of cardiovascular responses by influencing the caudal or rostral ventrolateral medulla. Furthermore, CeMGABA neurons targeting the NTS receive dense inputs from the CeL. Consequently, stimulation of CeMGABA neurons elicits hypotension through the CeM-NTS circuit, offering deeper insights into the cardiovascular responses associated with emotions and behaviors.
Animals
;
GABAergic Neurons/physiology*
;
Male
;
Central Amygdaloid Nucleus/physiopathology*
;
Hypotension/physiopathology*
;
Mice
;
Blood Pressure/physiology*
;
Mice, Inbred C57BL
;
Solitary Nucleus/physiology*
;
Photic Stimulation
;
Neural Pathways/physiology*
3.Study on dual-directional regulation induced by acupuncture at different acupoints in the rat with motility abnormality of the stomach.
Guo-Jie SUN ; Shu-Ju WANG ; Yan-Jun DU ; He-Ping HU ; Xu-Ping WU ; Li-Hong KONG
Chinese Acupuncture & Moxibustion 2007;27(11):839-842
OBJECTIVETo probe into the bidirectional regulation of acupuncture in the rat with motility abnormality of the stomach and the nerve mechanism.
METHODSAdopting electrophysiological methods, the extracellular discharge signals of neuronic action in NTS were recorded with glass microelectrodes. The effects of acupuncture at "Zusanli" (ST 36), "Neiguan" (PC 6), "Zhongwan" (CV 12), "Qihai" (CV 6) on discharges of NTS neurons and intra-gastric pressure were observed in the rat at normal physiological state, and increase or reduction of gastric motility.
RESULTSAcupuncture at "Zusanli" (ST 36), "Neiguan" (PC 6) could significantly promote gastric motility of the rat at normal status, increase or reduction of gastric motion, while acupuncture at "Zhongwan" (CV 12), "Qihai" (CV 6) could significantly inhibit gastric motion. And acupuncture at all the above acupoints could activate discharges of NTS neurons.
CONCLUSIONThe bidirectional regulation effect of an acupoint does not certainly indicate that the same point has bidirectional regulation effect on an internal organs at different pathological states, while this may show synthetic action of different points which is a good regulation towards normal states and homeostasis.
Acupuncture Points ; Acupuncture Therapy ; Animals ; Gastrointestinal Motility ; Male ; Rats ; Rats, Sprague-Dawley ; Solitary Nucleus ; physiology ; Stomach Diseases ; physiopathology ; therapy
4.Mechanisms of depressor effect of norepinephrine injected into subnucleus commissuriu of nucleus solitarius tractus in rabbits.
Yi, ZHANG ; Hongyan, LUO ; Shenghong, LIU ; Zhengrong, YI ; Ai, LI ; Xinwu, HU ; Changjin, LIU ; Ming, TANG ; Lieju, LIU ; Yuanlong, SONG ; Linlin, GAO
Journal of Huazhong University of Science and Technology (Medical Sciences) 2005;25(3):263-4, 268
This experiment aimed to investigate the effect of adrenergic system in the subnucleus commissuriu of nucleus solitrius tractus (CNTS) on renal nerve discharges. Norepinephrine (NE) was microinjected into the CNTS of rabbits and mean arterial blood pressure (MAP) and renal nerve discharges (FRND) were synchronously recorded. The results indicated that (1) microinjection of norepinephine into the CNTS of rabbit could significantly attenuate the frequency of renal nerve discharge, and at the same time decrease markedly the mean arterial pressure. (2) Microinjection of 0.3 nmol yohimbin into CNTS had no significant influence on FRND and MAP, but could attenuate and even reverse the effects of NE on FRND and MAP. These results suggest that microinjection of NE into CNTS may activate the alpha-adrenorecptor located in CNTS and secondarily produce a depressor effect by attenuating the activity of periphenal sympathetic nervous system.
Blood Pressure/drug effects
;
Depression, Chemical
;
Kidney/*innervation
;
Microinjections
;
Norepinephrine/*pharmacology
;
Solitary Nucleus/*physiology
;
Sympathetic Nervous System/drug effects
;
Sympathetic Nervous System/*physiopathology
;
Vasomotor System/physiopathology

Result Analysis
Print
Save
E-mail