1.Quality changes of volatile oil and chlorogenic acid compounds during extraction process of Artemisiae Argyi Folium: process analysis based on chemical composition, physicochemical properties, and biological activity.
Dan-Dan YANG ; Hao-Zhou HUANG ; Xin-Ming CHEN ; Lin HUANG ; Ya-Nan HE ; Zhen-Feng WU ; Xiao-Ming BAO ; Ding-Kun ZHANG ; Ming YANG
China Journal of Chinese Materia Medica 2025;50(11):3001-3012
To explore the variation laws of volatile oil during the extraction process of Artemisiae Argyi Folium and its impact on the quality of the medicinal solution, as well as to achieve precise control of the extraction process, this study employed headspace solid phase microextraction gas chromatography-mass spectrometry(HS-SPME-GC-MS) in combination with multiple light scattering techniques to conduct a comprehensive analysis, identification, and characterization of the changes in volatile components and the physical properties of the medicinal solution during the extraction process. A total of 82 volatile compounds were identified using the HS-SPME-GC-MS technique, including 21 alcohols, 15 alkenes, 14 ketones, 9 acids, 6 aldehydes, 5 phenols, 3 esters, and 9 other types of compounds. At different extraction time points(15, 30, 45, and 60 min), 71, 72, 64, and 44 compounds were identified in the medicinal solution, respectively. It was observed that the content of volatile components gradually decreased with the extension of extraction time. Through multivariate statistical analysis, four compounds with significant differences during different extraction time intervals were identified, namely 1,8-cineole, terpinen-4-ol, 3-octanone, and camphor. RESULTS:: from multiple light scattering techniques indicated that at 15 minutes of extraction, the transmittance of the medicinal solution was the lowest(25%), the particle size was the largest(0.325-0.350 nm), and the stability index(turbiscan stability index, TSI) was the highest(0-2.5). With the extension of extraction time, the light transmittance of the medicinal solution improved, stability was enhanced, and the particle size decreased. These laws of physicochemical property changes provide important basis for the control of Artemisiae Argyi Folium extraction process. In addition, the changes in the bioactivity of Artemisiae Argyi Folium extracts during the extraction process were investigated through mouse writhing tests and antimicrobial assays. The results indicated that the analgesic and antimicrobial effects of the medicinal solution were strongest at the 15-minute extracting point. In summary, the findings of this study demonstrate that the content of volatile oil in Artemisiae Argyi Folium extracts gradually decreases with the extension of extraction time, and the variation in volatile oil content directly influences the physicochemical properties and pharmacological efficacy of the medicinal solution. This discovery provides important scientific reference for the optimization of Artemisiae Argyi Folium extraction processes and the development and application of process analytical technologies.
Oils, Volatile/pharmacology*
;
Artemisia/chemistry*
;
Gas Chromatography-Mass Spectrometry
;
Drugs, Chinese Herbal/pharmacology*
;
Chlorogenic Acid/pharmacology*
;
Solid Phase Microextraction
;
Quality Control
2.Comparison on chemical components of Angelicae Sinensis Radix before and after wine processing by HS-GC-IMS, HS-SPME-GC-MS, and UPLC-Q-Orbitrap-MS combined with chemometrics.
Xue-Hao SUN ; Jia-Xuan CHEN ; Jia-Xin YIN ; Xiao HAN ; Zhi-Ying DOU ; Zheng LI ; Li-Ping KANG ; He-Shui YU
China Journal of Chinese Materia Medica 2025;50(14):3909-3917
The study investigated the intrinsic changes in material basis of Angelicae Sinensis Radix during wine processing by headspace-gas chromatography-ion mobility spectrometry(HS-GC-IMS), headspace-solid phase microextraction-gas chromatography-mass spectrometry(HS-SPME-GC-MS), and ultra-high performance liquid chromatography-quadrupole-orbitrap mass spectrometry(UPLC-Q-Orbitrap-MS) combined with chemometrics. HS-GC-IMS fingerprints of Angelicae Sinensis Radix before and after wine processing were established to analyze the variation trends of volatile components and characterize volatile small-molecule substances before and after processing. Principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were employed for differentiation and difference analysis. A total of 89 volatile components in Angelicae Sinensis Radix were identified by HS-GC-IMS, including 14 unsaturated hydrocarbons, 16 aldehydes, 13 ketones, 9 alcohols, 16 esters, 6 organic acids, and 15 other compounds. HS-SPME-GC-MS detected 118 volatile components, comprising 42 unsaturated hydrocarbons, 11 aromatic compounds, 30 alcohols, 8 alkanes, 6 organic acids, 4 ketones, 7 aldehydes, 5 esters, and 5 other volatile compounds. UPLC-Q-Orbitrap-MS identified 76 non-volatile compounds. PCA revealed distinct clusters of raw and wine-processed Angelicae Sinensis Radix samples across the three detection methods. Both PCA and OPLS-DA effectively discriminated between the two groups, and 145 compounds(VIP>1) were identified as critical markers for evaluating processing quality, including 4-methyl-3-penten-2-one, ethyl 2-methylpentanoate, and 2,4-dimethyl-1,3-dioxolane detected by HS-GC-IMS, angelic acid, β-pinene, and germacrene B detected by HS-SPME-GC-MS, and L-tryptophan, licoricone, and angenomalin detected by UPLC-Q-Orbitrap-MS. In conclusion, the integration of the three detection methods with chemometrics elucidates the differences in the chemical material basis between raw and wine-processed Angelicae Sinensis Radix, providing a scientific foundation for understanding the processing mechanisms and clinical applications of wine-processed Angelicae Sinensis Radix.
Wine/analysis*
;
Gas Chromatography-Mass Spectrometry/methods*
;
Chromatography, High Pressure Liquid/methods*
;
Angelica sinensis/chemistry*
;
Solid Phase Microextraction/methods*
;
Drugs, Chinese Herbal/isolation & purification*
;
Chemometrics
;
Volatile Organic Compounds/chemistry*
;
Principal Component Analysis
;
Ion Mobility Spectrometry/methods*
3.Comparison of odor and quality of Galli Gigerii Endothelium Corneum derived from domestic chickens and broilers.
Wei HUANG ; Lu-Meng CHEN ; Hao-Zhou HUANG ; Ya-Nan HE ; Xiao-Ming BAO ; Jing YANG ; Jun-Zhi LIN ; Peng TAN ; Li HAN ; Run-Chun XU ; Ding-Kun ZHANG
China Journal of Chinese Materia Medica 2022;47(20):5434-5442
Galli Gigerii Endothelium Corneum(GGEC) is commonly used for the clinical treatment of indigestion, vomiting, diarrhea, and infantile malnutrition with accumulation. In recent decades, omnivorous domestic chickens, the original source of GGEC, has been replaced by broilers, which may lead to significant changes in the quality of the yielding GGEC. Through subjective and objective sensory evaluation, biological evaluation, and chemical analysis, this study compared the odor and quality between GGEC derived from domestic chickens and that from broilers. The odor intensity between them was compared by odor profile analysis and it was found that the fishy odor of GGEC derived from domestic chickens was significantly weaker than that of GGEC from broilers. Headspace-solid phase microextraction-gas chromatography-triple quadrupole tandem mass spectrometry(HS-SPME/GC-QQQ-MS/MS) suggested that the overall odor-causing chemicals were consistent with the fishy odor-causing chemicals. According to the odor activity va-lue and the orthogonal partial least squares discriminant analysis(OPLS-DA) result, dimethyl trisulfide, 2-methoxy-3-isobutylpyrazine, and 2-methylisoborneol were responsible for the fishy odor(OAV≥1) and the content of fishy odor-causing chemicals in GGEC derived from broilers was 1.12-2.13 folds that in GGEC from domestic chickens. The average pepsin potency in GGEC derived from broilers was 15.679 U·mg~(-1), and the corresponding figure for the medicinal from domestic chickens was 26.529 U·mg~(-1). The results of pre-column derivatization reverse-phase high-performance liquid chromatography(RP-HPLC) assay showed that the content of total amino acids and digestion-promoting amino acids in domestic chickens-derived GGEC was 1.12 times and 1.15 times that in GGEC from broilers, and the bitter amino acid content was 1.21 times folds that of the latter. In conclusion, GGEC derived from domestic chickens had weaker fishy odor, stronger enzyme activity, higher content of digestion-promoting amino acids, and stronger bitter taste than GGEC from broilers. This study lays a scientific basis for studying the quality variation of GGEC and provides a method for identifying high-quality GGEC. Therefore, it is of great significance for the development and cultivation of GGEC as both food and medicine and breeding of corresponding varieties.
Animals
;
Odorants/analysis*
;
Chickens
;
Gas Chromatography-Mass Spectrometry/methods*
;
Tandem Mass Spectrometry
;
Solid Phase Microextraction
;
Amino Acids
;
Endothelium/chemistry*
;
Volatile Organic Compounds/analysis*
4.High-speed identification of odor changes and substance basis of Myristicae Semen mildew by electronic nose and HS-GC-MS.
Hui-Xuan TIAN ; Rui-Qi YANG ; Hui-Qin ZOU ; Xing-Yu GUO ; Wei-Feng HONG ; Yue-Bao YAO ; Yong LIU ; Yong-Hong YAN
China Journal of Chinese Materia Medica 2021;46(22):5853-5860
This study adopted headspace-gas chromatography-mass spectrometry(HS-GC-MS) and electronic nose to detect volatile components from Myristicae Semen samples with varying degrees of mildew, aiming at rapidly identifying odor changes and substance basis of Myristicae Semen mildew. The experimental data were analyzed by electronic nose and principal component analysis(PCA). The results showed that Myristicae Semen samples were divided into the following three categories by electronic nose and PCA: mildew-free samples, slightly mildewy samples, and mildewy samples. Myristicae Semen samples with different degrees of mildew greatly varied in volatile components. The volatile components in the samples were qualitatively and quantitatively detected by HS-GC-MS, and 59 compounds were obtained. There were significant differences in the composition and content in Myristicae Semen samples with different degrees of mildew. The PCA results were the same as those by electronic nose. Among them, 3-crene, D-limonene, and other terpenes were important indicators for the identification of mildew. Bicyclo[3.1.0]hexane, 4-methylene-1-(1-methylethyl)-, terpinen-4-ol, and other alcohols were key substances to distinguish the degree of mildew. In the later stage of mildew, Myristicae Semen produced a small amount of hydroxyl and aldehyde compounds such as acetaldehyde, 2-methyl-propionaldehyde, 2-methyl-butyraldehyde, and formic acid, which were deduced as the material basis of the mildew. The results are expected to provide a basis for the rapid identification of Myristicae Semen with different degrees of mildew, odor changes, and the substance basis of mildew.
Electronic Nose
;
Gas Chromatography-Mass Spectrometry
;
Odorants/analysis*
;
Semen/chemistry*
;
Solid Phase Microextraction
;
Volatile Organic Compounds/analysis*
5.Application of Dispersive Liquid-Liquid Microextraction in Forensic Toxicological Analysis.
Yu YANG ; Yun Feng ZHANG ; Xin Tong LI ; Fang Lin WANG ; Hong Yuan HE ; Jian HUANG
Journal of Forensic Medicine 2019;35(3):344-348
Currently, the main sample pretreatment methods for forensic toxic analysis are liquid-liquid extraction (LLE) and solid-phase extraction (SPE). As a simple, convenient, and low-cost LLE method, dispersion liquid-liquid microextraction (DLLME) has high enrichment factor and good extraction efficiency, and therefore has attracted the attention of many researchers in the field of toxicology analysis in recent years. As a multi-functional microextraction method, DLLME has been widely used in the analysis of pesticides, sleeping sedatives, drugs and heavy metal poisons in forensic toxic analysis. Meanwhile, it can also be used in combination with such a variety of analytical instruments as gas chromatography-electron capture detectors (GC-ECD), high performance liquid chromatography-diode array detectors (HPLC-DAD). As a sample pretreatment method, DLLME has the advantages of simple operation, less use of organic solvent, reliable results and good reproducibility, thus can meet the requirements of modern court toxic analysis.
Forensic Toxicology
;
Liquid Phase Microextraction
;
Reproducibility of Results
;
Solid Phase Extraction
;
Solvents
6.An Integrated Air Monitoring Approach for Assessment of Formaldehyde in the Workplace.
Stefano DUGHERI ; Alessandro BONARI ; Ilenia POMPILIO ; Marco COLPO ; Nicola MUCCI ; Giulio ARCANGELI
Safety and Health at Work 2018;9(4):479-485
The aim of this study is to validate an integrated air monitoring approach for assessing airborne formaldehyde (FA) in the workplace. An active sampling by silica gel impregnated with 2,4-dinitrophenylhydrazine, a passive solid phase microextraction technique using O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine as on-fiber derivatization reagent, an electrochemical direct-reading monitor, and an enzyme-based badge were evaluated and tested over a range of 0.020–5.12 ppm, using dynamically generated FA air concentrations. Simple linear regression analysis showed the four methods were suitable for evaluating airborne FA. Personal and area samplings in 12 anatomy pathology departments showed that the international occupational exposure limits in the GESTIS database were frequently exceeded. This monitoring approach would allow a fast, easy-to-use, and economical evaluation of both current work practices and eventual changes made to reduce FA vapor concentrations.
Chromatography
;
Formaldehyde*
;
Humans
;
Linear Models
;
Occupational Exposure
;
Pathology
;
Silica Gel
;
Solid Phase Microextraction
7.Relationship between the Change Rules of Volatile Organic Compounds in Rat Muscle and Postmortem Interval.
Bei Bei LIU ; Zhi Yuan XIA ; Jing Qi MA ; Pu LI ; Ping LÜ ; Hai Mei ZHOU
Journal of Forensic Medicine 2017;33(2):120-124
OBJECTIVES:
To explore the relationship between the change rules of volatile organic compounds (VOCs) in rat muscle and postmortem interval (PMI).
METHODS:
A total of 120 healthy rats were divided randomly into 12 groups (10 for each group). After the rats were sacrificed by cervical dislocation, the bodies were kept at (25±1) ℃. Rat muscle samples were separately obtained at 12 PMI points, including 0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 d. The VOCs in rat muscles were collected, detected and analyzed by headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography-mass spectrometer (GC-MS).
RESULTS:
In total, 15 species of VOCs were identified, including 9 aromatic compounds, 3 sulfur compounds, 2 aliphatic acids and 1 heterocyclic compound. The species of VOCs increased with PMI: no species were detected within 1 day, 3 species were detected on day 2, 9 on day 3, 11 on day 4, 14 from day 5 to 7, and 15 from day 8 to 10. Total peak area of 15 species of VOCs was significantly correlated to PMI (adjusted R²=0.15-0.96): the regression function was y=-17.05 x²+ 164.36 x-246.36 (adjusted R²=0.96) from day 2 to 5, and y=2.24 x+101.13 (adjusted R²=0.97) from day 6 to 10.
CONCLUSIONS
The change rules of VOCs in rat muscle are helpful for PMI estimation.
Animals
;
Autopsy
;
Gas Chromatography-Mass Spectrometry/methods*
;
Muscles/pathology*
;
Rats
;
Solid Phase Microextraction
;
Volatile Organic Compounds/chemistry*
8.Readspace solid-phase microextraction-gas chromatography for determination of 2,5-hexanedione in urine.
Wei ZOU ; Mengping ZHANG ; Haiyan WEI
Chinese Journal of Industrial Hygiene and Occupational Diseases 2015;33(4):297-298
OBJECTIVETo establish a method for determination of 2,5-hexanedione in urine by headspace solid-phase microextraction-gas chromatography.
METHODSAfter extraction by solid-phase microextraction head, 2,5-hexanedione in urine was determined by gas chromatography and was quantified by external standard method.
RESULTSThe concentration of 2,5-hexanedione in urine showed a linear relationship within the range of 0.1-20.0 µg/ml. The regression equation was y=261.36x-1.903 3, r=0.999 2. The minimum detectable concentration was 0.01 µg/ml. The recovery rate was 92.6%-97.1%, with a relative standard deviation (RSD) of 3.3%-5.8%. The intra-day and inter-day RSDs were 3.8%-6.2% and 4.7%-6.3% respectively.
CONCLUSIONThis determination method has no requirement for organic solvents, features simple and rapid operation, possesses higher detection sensitivity, and applies well to the determination of 2,5-hexanedione in urine.
Chromatography, Gas ; Hexanones ; urine ; Humans ; Sensitivity and Specificity ; Solid Phase Microextraction
9.Difference of volatile constituents contained in female and male flowers of Trichosanthes kirilowii by HS-SPME-GC-MS.
Wen SUN ; Zhimao CHAO ; Chun WANG ; Xiaoyi WU ; Zhigao TAN
China Journal of Chinese Materia Medica 2012;37(11):1570-1574
OBJECTIVETo compare and analyze volatile constituents from flowers of Trichosanthes kirilowii, in order to point out characteristic differences between female and male flowers.
METHODBlooming female and male flowers were collected in the same place. Volatile constituents were extracted from the flower by solid phase micro-extraction (SPME), then separated and analyzed by gas chromatography-mass-spectrometry (GC-MS).
RESULTFifty-two and forty-five chromatographic peaks were separated from the female and male flowers, respectively. Forty seven constituents were identified and their relative percentage compositions were determined with the peak area normalization method. Linalool, alpha-farnesene, benzene methanol, and (Z)-2-methylbutanal oxime were the main volatile constituents. The contents of linalool and alpha-farnesene in female flower were remarkably higher than those in male. In contrast, the content of benzene methanol in male flower was remarkably higher than that in female.
CONCLUSIONIn the first study on chemical constituents from flowers in genus Trichosanthes, 37 compounds are separated from T. kirilowii. Contents of linalool, alpha-farnesene and benzene methanol show the characteristic differences of volatile constituents contained in male and female flowers of T. kirilowii, which enriches the basic studies on dioecious plant.
Flowers ; chemistry ; Gas Chromatography-Mass Spectrometry ; Solid Phase Microextraction ; Trichosanthes ; chemistry ; Volatile Organic Compounds ; analysis ; chemistry ; isolation & purification
10.Stable life predection for Mentha haplocalyx by initial average rate stability test.
Jin-Mei WANG ; Chang-Qin LI ; Wen-Yi KANG
China Journal of Chinese Materia Medica 2012;37(21):3185-3187
OBJECTIVETo predict the stable life for Mentha haplocalyx.
METHODThe volatiles in M. haplocalyx were analyzed by head-space solid micro-extraction, coupled with GC-MS and a comprehensive evaluation of essential oil in M. haplocalyx was analyzed using the factor analysis. The prediction was carried out by initial average rate stability tests using the content of essential oil and the main volatiles as indices.
RESULTPrincipal component analysis indicated that pulegone and isomenthone can fully describe the quality of prepared slices. The t(0.9, 20 degrees C) was 5.49 years and 2.88 years respectively, carried out by essential oil, pulegone and isomenthone.
CONCLUSIONThe stable life for M. haplocalyx under 20 degrees C was 2.88 years.
Drug Stability ; Gas Chromatography-Mass Spectrometry ; Mentha ; chemistry ; Monoterpenes ; analysis ; Oils, Volatile ; analysis ; Solid Phase Microextraction

Result Analysis
Print
Save
E-mail