1.Microbial remediation of cadmium-contaminated soils and its mechanisms: a review.
Wenting XU ; Guoliang CHEN ; Zhihui QU ; Bixin LIANG ; Teng MAO ; Huan LIANG ; Zhang CHEN ; Zhixian LI
Chinese Journal of Biotechnology 2023;39(7):2612-2623
Excessive levels of cadmium (Cd) in soil exert serious negative impacts on soil ecosystems. Microorganisms are a common component of soil and show great potential for mitigating soil Cd. This review summarizes the application and remediation mechanisms of microorganisms, microbial-plants, and microbial-biochar in Cd-contaminated soil. Microorganisms such as Bacillus, Acinetobacter, Pseudomonas, and arbuscular mycorrhizal fungi (AMF) can change the biological validity of Cd through adsorption, mineralization, precipitation and dissolution. Different factors such as pH, temperature, biomass, concentration, and duration have significant effects on Cd bioavailability by microorganisms. Pseudomonas, Burkholderia, and Flavobacterium can promote the uptake of Cd2+ by hyperaccumulator through promotion and activation. Biochar, a soil amendment, possesses unique physicochemical properties and could act as a shelter for microorganisms in agriculture. The use of combined microbial-biochar can further stabilize Cd compared to using biochar alone.
Cadmium
;
Ecosystem
;
Soil Pollutants
;
Charcoal/chemistry*
;
Soil/chemistry*
2.Effect of VIT1/VIT2 overexpression on Fe and Cd accumulation in rice endosperm.
Yiqi HE ; Dong LIU ; Yujiao SHI ; Bao GUO ; Lin ZHOU ; Jinsong LUO ; Zhenhua ZHANG
Chinese Journal of Biotechnology 2023;39(2):713-723
Iron (Fe) deficiency and excess cadmium (Cd) in rice grain are important problems to be solved in agricultural production. Previous studies have shown that OsVIT1 and OsVIT2 are vacuolar iron transporters. In this study, wild-type ZH11 was selected as the background material and OsVIT1 and OsVIT2 were overexpressed in endosperm by using endosperm specific promoter Glb-1. Field experiments were conducted to study the effect of OsVIT1 and OsVIT2 overexpression on Fe and Cd accumulation in different parts of rice. The results showed that OsVIT1 overexpression in endosperm significantly reduced Fe content in grain by about 50%, while significantly increased zinc (Zn) and copper (Cu) contents in straw and Cu content in grain. OsVIT2 overexpression in endosperm significantly decreased Fe and Cd contents in grain by about 50%, and significantly increased Fe content in straw by 45%-120%. Overexpression of OsVIT1 and OsVIT2 in endosperm did not affect the agronomic traits of rice. In conclusion, OsVIT1 and OsVIT2 overexpression in endosperm reduced Fe accumulation in rice grain, which did not achieve the expected effect. OsVIT2 overexpression in endosperm also decreased Cd accumulation in grain and increased Fe accumulation in straw, which provided reference for iron biofortification and cadmium reduction in rice.
Cadmium
;
Endosperm/chemistry*
;
Oryza/genetics*
;
Iron
;
Zinc
;
Edible Grain
;
Soil Pollutants
3.Arbuscular mycorrhizal fungi enhanced cadmium uptake in Photinia frase through altering root transcriptomes and root-associated microbial communities.
Chen LIU ; Yicheng LIN ; Bin GUO ; Ningyu LI ; Hua LI ; Qinglin FU
Chinese Journal of Biotechnology 2022;38(1):287-302
As a non-essential metal, cadmium (Cd) pollution poses severe threats to plant growth, environment, and human health. Phytoextraction using nursery stocks prior to their transplantation is a potential useful approach for bioremediation of Cd contaminated soil. A greenhouse pot experiment was performed to investigate the growth, Cd accumulation, profiles of transcriptome as well as root-associated microbiomes of Photinia frase in Cd-added soil, upon inoculation of two types of arbuscular mycorrhizal fungi (AMF) Sieverdingia tortuosa and Funneliformis mosseae. Compared with the control, inoculation of F. mosseae increased Cd concentrations in root, stem and leaf by 57.2%, 44.1% and 71.1%, respectively, contributing to a total Cd content of 182 μg/plant. KEGG pathway analysis revealed that hundreds of genes involved in 'Mitogen-activated protein kinase (MAPK) signaling pathway', 'plant hormone signal transduction', 'biosynthesis of secondary metabolites' and 'glycolysis/gluconeogenesis' were enriched upon inoculation of F. mosseae. The relative abundance of Acidobacteria was increased upon inoculation of S. tortuosa, while Chloroflexi and Patescibacteria were increased upon inoculation of F. mosseae, and the abundance of Glomerales increased from 23.0% to above 70%. Correlation analysis indicated that ethylene-responsive transcription factor, alpha-aminoadipic semialdehyde synthase, isoamylase and agmatine deiminase related genes were negatively associated with the relative abundance of Glomerales operational taxonomic units (OTUs) upon inoculation of F. mosseae. In addition, plant cysteine oxidase, heat shock protein, cinnamoyl-CoA reductase and abscisic acid receptor related genes were positively associated with the relative abundance of Patescibacteria OTUs upon inoculation of F. mosseae. These finding suggested that AMF can enhance P. frase Cd uptake by modulating plant gene expression and altering the structure of the soil microbial community. This study provides a theoretical basis for better understanding the relationship between root-associated microbiomes and root transcriptomes of P. frase, from which a cost-effective and environment-friendly strategy for phytoextraction of Cd in Cd-polluted soil might be developed.
Cadmium
;
Humans
;
Microbiota
;
Mycorrhizae
;
Photinia
;
Soil Pollutants
;
Transcriptome
4.Effects of plant growth-promoting rhizobacteria Klebsiella michiganensis TS8 and Lelliottia jeotgali MR2 on the growth and cadmium uptake of Arabidopsis thaliana under cadmium stress.
Liang CHEN ; Yan BAI ; Shuming LIU ; Hongmei LIU ; Rui CHEN ; Yunhua XIAO
Chinese Journal of Biotechnology 2022;38(5):1915-1928
In this study, the effects of two plant growth-promoting bacteria Klebsiella michiganensis TS8 and Lelliottia Jeotgali MR2 on the growth and cadmium (Cd) uptake of Arabidopsis thaliana under Cd stress were explored. A wild-type Arabidopsis thaliana was selected as the experimental plant and was planted at different Cd concentrations. MR2 and TS8 bacterial suspensions were sprayed onto the rhizospheric soil during the planting process. The initial Cd concentration of the bought soil was 14.17 mg/kg, which was used as the pot soil of the low-concentration Cd treatment group (LC). The concentration of soil Cd at high-concentration Cd treatment group (HC) were 200 mg/kg higher than that at LC group. Compared with the control group, MR2 suspension significantly promoted the growth of A. thaliana at both low and high concentrations, while TS8 strain and MR2_TS8 mixture only exhibited growth-promoting effect at high concentration. However, it was noteworthy that, TS8 suspension significantly reduced the Cd content in the underground parts of A. thaliana (60% and 59%), and significantly improved the Cd content in the aboveground parts of A. thaliana (234% and 35%) at both low and high concentrations. In addition, at low concentration, both single strain and mixed strains significantly improved the transformation from reducible Cd to acid-extractable Cd in soil, promoted Cd intake, and thereby reduced the total Cd content in soil. Therefore, the rational application of plant growth-promoting bacteria may improve crop yield and remediate Cd contamination in soil.
Arabidopsis
;
Bacteria
;
Biodegradation, Environmental
;
Cadmium/pharmacology*
;
Enterobacteriaceae
;
Klebsiella
;
Plant Roots/chemistry*
;
Soil
;
Soil Pollutants
5.Environmental risks of antibiotics in soil and the related bioremediation technologies.
Yujie HE ; Kaiping ZHOU ; Yixuan RAO ; Rong JI
Chinese Journal of Biotechnology 2021;37(10):3487-3504
Antibiotics are widely used and prevalently distributed in the environment. The issue of antibiotic resistance genes has posed a huge threat to the global public health. Soil is an important sink of antibiotics in the environment. Antibiotic exposure may introduce adverse effects on soil organisms, and bring indirect but potential risks to human health. Therefore, it is urgent to take actions to remediate antibiotics-contaminated soil. This review summarized effects of antibiotics on phenotype growth of plants, physiological characteristics and community structure of animals, composition and structure of microbial communities, and transmission of antibiotic resistance genes among organisms in soil. Additionally, the potential and prospects of employing antibiotic-resistant soil plants, animals, microorganisms, and their combinations to treat antibiotics-contaminated soil were illustrated. Last but not least, the unaddressed issues in this area were proposed, which may provide insights into relevant research directions in the future.
Animals
;
Anti-Bacterial Agents/pharmacology*
;
Biodegradation, Environmental
;
Drug Resistance, Microbial/genetics*
;
Humans
;
Soil
;
Soil Microbiology
;
Soil Pollutants
6.Advances in bioremediation of polycyclic aromatic hydrocarbons contaminated soil.
Meilin ZHENG ; Yinghao ZHAO ; Lili MIAO ; Xiyan GAO ; Zhipei LIU
Chinese Journal of Biotechnology 2021;37(10):3535-3548
Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent pollutants that are widely distributed in the environment. Due to their stable structure and poor degradability, PAHs exhibit carcinogenic, teratogenic, and mutagenic toxicity to the ecological environment and organisms, thus increasing attentions have been paid to their removals and remediation. Green, safe and economical technologies are widely used in the bioremediation of PAHs-contaminated soil. This article summarizes the present status of PAHs pollution in soil of China from the aspects of origin, migration, fate, and pollution level. Meanwhile, the types of microorganisms and plants capable of degrading PAHs, as well as the underlying mechanisms, are summarized. The features of three major bioremediation technologies, i.e., microbial remediation, phytoremediation, and joint remediation, are compared. Analysis of the interaction mechanisms between plants and microorganisms, selection and cultivation of stress-resistant strains and plants, as well as safety and efficacy evaluation of practical applications, are expected to become future directions in this field.
Biodegradation, Environmental
;
Polycyclic Aromatic Hydrocarbons/toxicity*
;
Soil
;
Soil Microbiology
;
Soil Pollutants
7.Symbiosis between hyperaccumulators and arbuscular mycorrhizal fungi and their synergistic effect on the absorption and accumulation of heavy metals: a review.
Li WANG ; Gen WANG ; Fang MA ; Yongqiang YOU
Chinese Journal of Biotechnology 2021;37(10):3604-3621
The remediation of heavy-metal (HM) contaminated soil using hyperaccumulators is one of the important solutions to address the inorganic contamination widely occurred worldwide. Hyperaccumulators are able to hyperaccumulate HMs, but their planting, growth, and extraction capacities are greatly affected by HM stress. The application of arbuscular mycorrhizal fungi (AMF) enhances the function of hyperaccumulators by combining the functional advantages of both, improving the efficiency of remediation, shortening the remediation cycle, and maintaining the stability and persistence of the remediation. Thus, the combined use of AMF with hyperaccumulators has broad prospects for application in the management of increasingly complex and severe HM pollution. This review starts by defining the concept of hyperaccumulators, followed by describing the typical hyperaccumulators that were firstly reported in China as well as those known to form symbioses with AMF. This review provides a systematic and in-depth discussion of the effects of AMF on the growth of hyperaccumulators, as well as the absorption and accumulation of HMs, the effects and mechanism on the hyperaccumulator plus AMF symbiosis to absorb and accumulate HMs. AMF enhances the function of hyperaccumulators on the absorption and accumulation of HMs by regulating the physicochemical and biological conditions in the plant rhizosphere, the situation of elements homeostasis, the physiological metabolism and gene expression. Moreover, the symbiotic systems established by hyperaccumulators plus AMF have the potential to combine their abilities to remediate HMs-contaminated habitat. Finally, challenges for the combined use of remediation technologies for hyperaccumulator plus AMF symbiosis and future directions were prospected.
Biodegradation, Environmental
;
Metals, Heavy
;
Mycorrhizae/chemistry*
;
Plant Roots/chemistry*
;
Soil Pollutants
;
Symbiosis
8.Advances in the bioaugmentation-assisted remediation of petroleum contaminated soil.
Jin ZHENG ; Yali FU ; Quanwei SONG ; Jiacai XIE ; Shuangjun LIN ; Rubing LIANG
Chinese Journal of Biotechnology 2021;37(10):3622-3635
Bioremediation is considered as a cost-effective, efficient and free-of-secondary-pollution technology for petroleum pollution remediation. Due to the limitation of soil environmental conditions and the nature of petroleum pollutants, the insufficient number and the low growth rate of indigenous petroleum-degrading microorganisms in soil lead to long remediation cycle and poor remediation efficiency. Bioaugmentation can effectively improve the biodegradation efficiency. By supplying functional microbes or microbial consortia, immobilized microbes, surfactants and growth substrates, the remediation effect of indigenous microorganisms on petroleum pollutants in soil can be boosted. This article summarizes the reported petroleum-degrading microbes and the main factors influencing microbial remediation of petroleum contaminated soil. Moreover, this article discusses a variety of effective strategies to enhance the bioremediation efficiency, as well as future directions of bioaugmentation strategies.
Biodegradation, Environmental
;
Petroleum
;
Soil
;
Soil Microbiology
;
Soil Pollutants
9.Advances in bioremediation of hydrocarbon-contaminated soil.
Lei ZHONG ; Jinwu QING ; Hongyun CHEN ; Gaoyuan LI ; Guanyi CHEN ; Yuru SUN ; Jinlei LI ; Yingjin SONG ; Beibei YAN
Chinese Journal of Biotechnology 2021;37(10):3636-3652
With continuous improvement of people's living standards, great efforts have been paid to environmental protection. Among those environmental issues, soil contamination by petroleum hydrocarbons has received widespread concerns due to the persistence and the degradation difficulty of the pollutants. Among the various remediation technologies, in-situ microbial remediation enhancement technologies have become the current hotspot because of its low cost, environmental friendliness, and in-situ availability. This review summarizes several in-situ microbial remediation technologies such as bioaugmentation, biostimulation, and integrated remediation, as well as their engineering applications, providing references for the selection of in-situ bioremediation technologies in engineering applications. Moreover, this review discusses future research directions in this area.
Biodegradation, Environmental
;
Humans
;
Hydrocarbons
;
Petroleum
;
Soil
;
Soil Microbiology
;
Soil Pollutants
10.A polycyclic aromatic hydrocarbon degrading strain and its potential of degrading phenanthrene in various enhanced systems.
Congyang LIU ; Meini WANG ; Jiameng ZHANG ; Youfen QIAN ; Kun XIAO ; Rennü WANG ; Wei DONG ; Tao PAN
Chinese Journal of Biotechnology 2021;37(10):3696-3707
Polycyclic aromatic hydrocarbons (PAHs) are a class of common environmental pollutants that pose threats to human health. In this study, a mesophilic bacterial strain CFP312 (grown at 15-37 °C, optimal at 30 °C) was isolated from PAHs-contaminated soil samples. It was identified as Moraxella sp. by morphological observation, physiological and biochemical test, and 16S rRNA gene phylogeny analysis. This is the first reported PAHs degrading strains in Moraxella. Degradation analysis showed that 84% and 90% of the loaded phenanthrene (400 mg/L) were degraded within 48 h and 60 h, and the degradation rates reached 1.21 and 1.29 mg/(L·h), respectively. During the degradation of phenanthrene, phenanthrene-3,4-dihydrodiol was detected as an intermediate. Based on this, it was proposed that double oxygenation at the positions 3 and 4 of phenanthrene was the first step of biodegradation. Adaptability of strain CFP312 to different enhanced phenanthrene-degradation systems was tested in aqueous-organic system, micellar aqueous system, and cloud point system. Strain CFP312 showed good adaptability to different systems. In addition, the bacterium can rapidly degrade the phenanthrene in contaminated soil in slurry-aqueous system, indicating great potential in environmental remediation.
Biodegradation, Environmental
;
Humans
;
Phenanthrenes
;
Polycyclic Aromatic Hydrocarbons
;
RNA, Ribosomal, 16S/genetics*
;
Soil Microbiology
;
Soil Pollutants

Result Analysis
Print
Save
E-mail