1.Applications of Single-Cell Omics Technologies for Induced Pluripotent Stem Cell-Based Cardiovascular Research
Hyunjoon KIM ; Sohee CHOI ; HyoJung HEO ; Su Han CHO ; Yuna LEE ; Dohyup KIM ; Kyung Oh JUNG ; Siyeon RHEE
International Journal of Stem Cells 2025;18(1):37-48
Single-cell omics technologies have transformed our investigation of genomic, transcriptomic, and proteomic landscapes at the individual cell level. In particular, the application of single-cell RNA sequencing has unveiled the complex transcriptional variations inherent in cardiac cells, offering valuable perspectives into their dynamics. This review focuses on the integration of single-cell omics with induced pluripotent stem cells (iPSCs) in the context of cardiovascular research, offering a unique avenue to deepen our understanding of cardiac biology. By synthesizing insights from various single-cell technologies, we aim to elucidate the molecular intricacies of heart health and diseases. Beyond current methodologies, we explore the potential of emerging paradigms such as single-cell/spatial omics, delving into their capacity to reveal the spatial organization of cellular components within cardiac tissues. Furthermore, we anticipate their transformative role in shaping the future of cardiovascular research. This review aims to contribute to the advancement of knowledge in the field, offering a comprehensive perspective on the synergistic potential of transcriptomic analyses, iPSC applications, and the evolving frontier of spatial omics.
2.Applications of Single-Cell Omics Technologies for Induced Pluripotent Stem Cell-Based Cardiovascular Research
Hyunjoon KIM ; Sohee CHOI ; HyoJung HEO ; Su Han CHO ; Yuna LEE ; Dohyup KIM ; Kyung Oh JUNG ; Siyeon RHEE
International Journal of Stem Cells 2025;18(1):37-48
Single-cell omics technologies have transformed our investigation of genomic, transcriptomic, and proteomic landscapes at the individual cell level. In particular, the application of single-cell RNA sequencing has unveiled the complex transcriptional variations inherent in cardiac cells, offering valuable perspectives into their dynamics. This review focuses on the integration of single-cell omics with induced pluripotent stem cells (iPSCs) in the context of cardiovascular research, offering a unique avenue to deepen our understanding of cardiac biology. By synthesizing insights from various single-cell technologies, we aim to elucidate the molecular intricacies of heart health and diseases. Beyond current methodologies, we explore the potential of emerging paradigms such as single-cell/spatial omics, delving into their capacity to reveal the spatial organization of cellular components within cardiac tissues. Furthermore, we anticipate their transformative role in shaping the future of cardiovascular research. This review aims to contribute to the advancement of knowledge in the field, offering a comprehensive perspective on the synergistic potential of transcriptomic analyses, iPSC applications, and the evolving frontier of spatial omics.
3.Applications of Single-Cell Omics Technologies for Induced Pluripotent Stem Cell-Based Cardiovascular Research
Hyunjoon KIM ; Sohee CHOI ; HyoJung HEO ; Su Han CHO ; Yuna LEE ; Dohyup KIM ; Kyung Oh JUNG ; Siyeon RHEE
International Journal of Stem Cells 2025;18(1):37-48
Single-cell omics technologies have transformed our investigation of genomic, transcriptomic, and proteomic landscapes at the individual cell level. In particular, the application of single-cell RNA sequencing has unveiled the complex transcriptional variations inherent in cardiac cells, offering valuable perspectives into their dynamics. This review focuses on the integration of single-cell omics with induced pluripotent stem cells (iPSCs) in the context of cardiovascular research, offering a unique avenue to deepen our understanding of cardiac biology. By synthesizing insights from various single-cell technologies, we aim to elucidate the molecular intricacies of heart health and diseases. Beyond current methodologies, we explore the potential of emerging paradigms such as single-cell/spatial omics, delving into their capacity to reveal the spatial organization of cellular components within cardiac tissues. Furthermore, we anticipate their transformative role in shaping the future of cardiovascular research. This review aims to contribute to the advancement of knowledge in the field, offering a comprehensive perspective on the synergistic potential of transcriptomic analyses, iPSC applications, and the evolving frontier of spatial omics.
4.Translational Approach to Social Isolation During a Global Pandemic: Hippocampal Somatic Mutation and Stress
Bomee LEE ; Seri MAENG ; Yuri SEO ; Sohee JUNG ; Soojung IM ; Hyung Jun CHOI ; Jae Nam BAE ; Yangsik KIM
Psychiatry Investigation 2024;21(12):1360-1371
Objective:
The coronavirus disease-2019 (COVID-19) pandemic’s social isolation has significantly impacted mental health, increasing depression and anxiety. This study explores the effects of social isolation on both humans and mice, focusing on behavioral changes and hippocampal protein expression. It also investigates genetic alterations through single-cell RNA and whole-genome sequencing (WGS).
Methods:
Here we conducted behavioral studies, protein expression studies, single-nucleus sequencing (snRNAseq), and WGS of the hippocampus of mice that underwent early maternal separation and social isolation, and a demographic study of community populations who had been self-quarantined owing to COVID-19 exposure to investigate the link between somatic mutations and stress due to social isolation.
Results:
The demographic study demonstrated more negative mental health findings among individuals who live alone or are single. Mice subjected to early maternal separation and social isolation demonstrated increased anxiety-like behaviors and stress-related corticotropin-releasing hormone receptor 1, and neurogenesis-related sex-determining region Y-box 2 and doublecortin expression. In snRNA-seq, differences, such as transthyretin increase, were observed in the maternal separation group, and somatic mutations, including insertion in the intron site of Tmem267, were observed in the social isolation group on WGS.
Conclusion
The results of this study suggest that stress, such as social isolation, can cause changes at the genetic level, as well as behavioral and brain protein changes.
5.Translational Approach to Social Isolation During a Global Pandemic: Hippocampal Somatic Mutation and Stress
Bomee LEE ; Seri MAENG ; Yuri SEO ; Sohee JUNG ; Soojung IM ; Hyung Jun CHOI ; Jae Nam BAE ; Yangsik KIM
Psychiatry Investigation 2024;21(12):1360-1371
Objective:
The coronavirus disease-2019 (COVID-19) pandemic’s social isolation has significantly impacted mental health, increasing depression and anxiety. This study explores the effects of social isolation on both humans and mice, focusing on behavioral changes and hippocampal protein expression. It also investigates genetic alterations through single-cell RNA and whole-genome sequencing (WGS).
Methods:
Here we conducted behavioral studies, protein expression studies, single-nucleus sequencing (snRNAseq), and WGS of the hippocampus of mice that underwent early maternal separation and social isolation, and a demographic study of community populations who had been self-quarantined owing to COVID-19 exposure to investigate the link between somatic mutations and stress due to social isolation.
Results:
The demographic study demonstrated more negative mental health findings among individuals who live alone or are single. Mice subjected to early maternal separation and social isolation demonstrated increased anxiety-like behaviors and stress-related corticotropin-releasing hormone receptor 1, and neurogenesis-related sex-determining region Y-box 2 and doublecortin expression. In snRNA-seq, differences, such as transthyretin increase, were observed in the maternal separation group, and somatic mutations, including insertion in the intron site of Tmem267, were observed in the social isolation group on WGS.
Conclusion
The results of this study suggest that stress, such as social isolation, can cause changes at the genetic level, as well as behavioral and brain protein changes.
6.Chromosomal Microarray Analysis in Fetuses With Ultrasonographic Soft Markers: A Meta-Analysis of the Current Evidence
Uisuk KIM ; Young Mi JUNG ; Sohee OH ; Ji Hye BAE ; Jeesun LEE ; Chan-Wook PARK ; Joong Shin PARK ; Jong Kwan JUN ; Seung Mi LEE
Journal of Korean Medical Science 2024;39(8):e70-
Background:
Ultrasonographic soft markers are normal variants, rather than fetal abnormalities, and guidelines recommend a detailed survey of fetal anatomy to determine the necessity of antenatal karyotyping. Anecdotal reports have described cases with ultrasonographic soft markers in which chromosomal microarray analysis (CMA) revealed pathogenic copy number variants (CNVs) despite normal results on conventional karyotyping, but CMA for ultrasonographic soft markers remains a matter of debate. In this systematic review, we evaluated the clinical significance of CMA for pregnancies with isolated ultrasonographic soft markers and a normal fetal karyotype.
Methods:
An electronic search was conducted by an experienced librarian through the MEDLINE, Embase, and Cochrane CENTRAL databases. We reviewed 3,338 articles (3,325 identified by database searching and 13 by a hand search) about isolated ultrasonographic soft markers, and seven ultrasonographic markers (choroid plexus cysts, echogenic bowel, echogenic intracardiac focus, hypoplastic nasal bone, short femur [SF], single umbilical artery, and urinary tract dilatation) were included for this study.
Results:
Seven eligible articles were included in the final review. Pathogenic or likely pathogenic CNVs were found in fetuses with isolated ultrasonographic soft markers and a normal karyotype. The overall prevalence of pathogenic or likely pathogenic CNVs was 2.0% (41 of 2,048). The diagnostic yield of CMA was highest in fetuses with isolated SF (9 of 225, 3.9%).
Conclusion
CMA could aid in risk assessment and pregnancy counseling in pregnancies where the fetus has isolated ultrasonographic soft markers along with a normal karyotype.
7.Implication of Social Rejection in Cognitive Bias Modification Interpretation Training in Adolescents With Eating Disorders
Youl-Ri KIM ; Sohee LEE ; Yeon-Sun CHO
Journal of the Korean Academy of Child and Adolescent Psychiatry 2024;35(2):101-106
Objectives:
Difficulties in interpersonal relationships intensify negative emotions and act as risk and maintenance factors for eating pathology in eating disorders. Rejection sensitivity refers to the tendency to react sensitively to a rejection. Patients with eating disorders experience difficulties in interpersonal relationships because of their high sensitivity to rejection. Cognitive bias modification interpretation (CBM-I) is a treatment developed to correct interpretation bias for social and emotional stimuli. In this review, we searched for research characteristics and trends through a systematic literature analysis of CBM-I for eating disorders.
Methods:
Five papers that met the selection and exclusion criteria were included in the final literature review and analyzed according to detailed topics (participant characteristics, design, and results).
Results:
The literature supports the efficacy of the CBM-I in reducing negative interpretation bias and eating disorder psychopathology in patients with eating disorders. CBM-I targets emotional dysregulation in adolescent patients with eating disorders and serves as an additional strengthening psychotherapy to alleviate eating disorder symptoms.
Conclusion
The current findings highlight the potential of CBM-I as an individualized adjunctive treatment for adolescents with eating disorders and social functioning problems.
8.Comparison of Population Attributable Fractions of Cancer Incidence and Mortality Linked to Excess Body Weight in Korea from 2015 to 2030
Youjin HONG ; Jihye AN ; Jeehi JUNG ; Hyeon Sook LEE ; Soseul SUNG ; Sungji MOON ; Inah KIM ; Jung Eun LEE ; Aesun SHIN ; Sun Ha JEE ; Sun-Seog KWEON ; Min-Ho SHIN ; Sangmin PARK ; Seung-Ho RYU ; Sun Young YANG ; Seung Ho CHOI ; Jeongseon KIM ; Sang-Wook YI ; Yoon-Jung CHOI ; Sangjun LEE ; Woojin LIM ; Kyungsik KIM ; Sohee PARK ; Jeong-Soo IM ; Hong Gwan SEO ; Kwang-Pil KO ; Sue K. PARK
Endocrinology and Metabolism 2024;39(6):921-931
Background:
The increasing rate of excess body weight (EBW) in the global population has led to growing health concerns, including cancer-related EBW. We aimed to estimate the population attributable fraction (PAF) of cancer incidence and deaths linked to EBW in Korean individuals from 2015 to 2030 and to compare its value with various body mass index cutoffs.
Methods:
Levin’s formula was used to calculate the PAF; the prevalence rates were computed using the Korean National Health and Nutrition Examination Survey data, while the relative risks of specific cancers related to EBW were estimated based on the results of Korean cohort studies. To account for the 15-year latency period when estimating the PAF in 2020, the prevalence rates from 2015 and attributable cases or deaths from 2020 were used.
Results:
The PAF attributed to EBW was similar for both cancer incidence and deaths using either the World Health Organization (WHO) Asian-Pacific region standard or a modified Asian standard, with the WHO standard yielding the lowest values. In the Korean population, the PAFs of EBW for cancer incidence were 2.96% in men and 3.61% in women, while those for cancer deaths were 0.67% in men and 3.06% in women in 2020. Additionally, PAFs showed a gradual increase in both sexes until 2030.
Conclusion
The EBW continues to have a significant impact on cancer incidence and deaths in Korea. Effective prevention strategies targeting the reduction of this modifiable risk factor can substantially decrease the cancer burden.
9.Translational Approach to Social Isolation During a Global Pandemic: Hippocampal Somatic Mutation and Stress
Bomee LEE ; Seri MAENG ; Yuri SEO ; Sohee JUNG ; Soojung IM ; Hyung Jun CHOI ; Jae Nam BAE ; Yangsik KIM
Psychiatry Investigation 2024;21(12):1360-1371
Objective:
The coronavirus disease-2019 (COVID-19) pandemic’s social isolation has significantly impacted mental health, increasing depression and anxiety. This study explores the effects of social isolation on both humans and mice, focusing on behavioral changes and hippocampal protein expression. It also investigates genetic alterations through single-cell RNA and whole-genome sequencing (WGS).
Methods:
Here we conducted behavioral studies, protein expression studies, single-nucleus sequencing (snRNAseq), and WGS of the hippocampus of mice that underwent early maternal separation and social isolation, and a demographic study of community populations who had been self-quarantined owing to COVID-19 exposure to investigate the link between somatic mutations and stress due to social isolation.
Results:
The demographic study demonstrated more negative mental health findings among individuals who live alone or are single. Mice subjected to early maternal separation and social isolation demonstrated increased anxiety-like behaviors and stress-related corticotropin-releasing hormone receptor 1, and neurogenesis-related sex-determining region Y-box 2 and doublecortin expression. In snRNA-seq, differences, such as transthyretin increase, were observed in the maternal separation group, and somatic mutations, including insertion in the intron site of Tmem267, were observed in the social isolation group on WGS.
Conclusion
The results of this study suggest that stress, such as social isolation, can cause changes at the genetic level, as well as behavioral and brain protein changes.
10.Comparison of Population Attributable Fractions of Cancer Incidence and Mortality Linked to Excess Body Weight in Korea from 2015 to 2030
Youjin HONG ; Jihye AN ; Jeehi JUNG ; Hyeon Sook LEE ; Soseul SUNG ; Sungji MOON ; Inah KIM ; Jung Eun LEE ; Aesun SHIN ; Sun Ha JEE ; Sun-Seog KWEON ; Min-Ho SHIN ; Sangmin PARK ; Seung-Ho RYU ; Sun Young YANG ; Seung Ho CHOI ; Jeongseon KIM ; Sang-Wook YI ; Yoon-Jung CHOI ; Sangjun LEE ; Woojin LIM ; Kyungsik KIM ; Sohee PARK ; Jeong-Soo IM ; Hong Gwan SEO ; Kwang-Pil KO ; Sue K. PARK
Endocrinology and Metabolism 2024;39(6):921-931
Background:
The increasing rate of excess body weight (EBW) in the global population has led to growing health concerns, including cancer-related EBW. We aimed to estimate the population attributable fraction (PAF) of cancer incidence and deaths linked to EBW in Korean individuals from 2015 to 2030 and to compare its value with various body mass index cutoffs.
Methods:
Levin’s formula was used to calculate the PAF; the prevalence rates were computed using the Korean National Health and Nutrition Examination Survey data, while the relative risks of specific cancers related to EBW were estimated based on the results of Korean cohort studies. To account for the 15-year latency period when estimating the PAF in 2020, the prevalence rates from 2015 and attributable cases or deaths from 2020 were used.
Results:
The PAF attributed to EBW was similar for both cancer incidence and deaths using either the World Health Organization (WHO) Asian-Pacific region standard or a modified Asian standard, with the WHO standard yielding the lowest values. In the Korean population, the PAFs of EBW for cancer incidence were 2.96% in men and 3.61% in women, while those for cancer deaths were 0.67% in men and 3.06% in women in 2020. Additionally, PAFs showed a gradual increase in both sexes until 2030.
Conclusion
The EBW continues to have a significant impact on cancer incidence and deaths in Korea. Effective prevention strategies targeting the reduction of this modifiable risk factor can substantially decrease the cancer burden.

Result Analysis
Print
Save
E-mail