1.Protective effect of intervention with cannabinoid type-2 receptor agonist JWH133 on pulmonary fibrosis in mice.
Xiao WU ; Wen Ting YANG ; Yi Ju CHENG ; Lin PAN ; Yu Quan ZHANG ; Hong Lan ZHU ; Meng Lin ZHANG
Chinese Journal of Internal Medicine 2023;62(7):841-849
Objective: JWH133, a cannabinoid type 2 receptor agonist, was tested for its ability to protect mice from bleomycin-induced pulmonary fibrosis. Methods: By using a random number generator, 24 C57BL/6J male mice were randomly divided into the control group, model group, JWH133 intervention group, and JWH133+a cannabinoid type-2 receptor antagonist (AM630) inhibitor group, with 6 mice in each group. A mouse pulmonary fibrosis model was established by tracheal instillation of bleomycin (5 mg/kg). Starting from the first day after modeling, the control group mice were intraperitoneally injected with 0.1 ml of 0.9% sodium chloride solution, and the model group mice were intraperitoneally injected with 0.1 ml of 0.9% sodium chloride solution. The JWH133 intervention group mice were intraperitoneally injected with 0.1 ml of JWH133 (2.5 mg/kg, dissolved in physiological saline), and the JWH133+AM630 antagonistic group mice were intraperitoneally injected with 0.1 ml of JWH133 (2.5 mg/kg) and AM630 (2.5 mg/kg). After 28 days, all mice were killed; the lung tissue was obtained, pathological changes were observed, and alveolar inflammation scores and Ashcroft scores were calculated. The content of type Ⅰ collagen in the lung tissue of the four groups of mice was measured using immunohistochemistry. The levels of interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) in the serum of the four groups of mice were measured using enzyme-linked immunosorbent assay (ELISA), and the content of hydroxyproline (HYP) in the lung tissue of the four groups of mice was measured. Western blotting was used to measure the protein expression levels of type Ⅲ collagen, α-smooth muscle actin (α-SMA), extracellular signal regulated kinase (ERK1/2), phosphorylated P-ERK1/2 (P-ERK1/2), and phosphorylated ribosome S6 kinase type 1 (P-p90RSK) in the lung tissue of mice in the four groups. Real-time quantitative polymerase chain reaction was used to measure the expression levels of collagen Ⅰ, collagen Ⅲ, and α-SMA mRNA in the lung tissue of the four groups of mice. Results: Compared with the control group, the pathological changes in the lung tissue of the model group mice worsened, with an increase in alveolar inflammation score (3.833±0.408 vs. 0.833±0.408, P<0.05), an increase in Ashcroft score (7.333±0.516 vs. 2.000±0.633, P<0.05), an increase in type Ⅰ collagen absorbance value (0.065±0.008 vs. 0.018±0.006, P<0.05), an increase in inflammatory cell infiltration, and an increase in hydroxyproline levels [(1.551±0.051) μg/mg vs. (0.974±0.060) μg/mg, P<0.05]. Compared with the model group, the JWH133 intervention group showed reduced pathological changes in lung tissue, decreased alveolar inflammation score (1.833±0.408, P<0.05), decreased Ashcroft score (4.167±0.753, P<0.05), decreased type Ⅰ collagen absorbance value (0.032±0.004, P<0.05), reduced inflammatory cell infiltration, and decreased hydroxyproline levels [(1.148±0.055) μg/mg, P<0.05]. Compared with the JWH133 intervention group, the JWH133+AM630 antagonistic group showed more severe pathological changes in the lung tissue of mice, increased alveolar inflammation score and Ashcroft score, increased type Ⅰ collagen absorbance value, increased inflammatory cell infiltration, and increased hydroxyproline levels. Compared with the control group, the expression of α-SMA, type Ⅲ collagen, P-ERK1/2, and P-p90RSK proteins in the lung tissue of the model group mice increased, while the expression of type Ⅰ collagen, type Ⅲ collagen, and α-SMA mRNA increased. Compared with the model group, the protein expression of α-SMA (relative expression 0.60±0.17 vs. 1.34±0.19, P<0.05), type Ⅲ collagen (relative expression 0.52±0.09 vs. 1.35±0.14, P<0.05), P-ERK1/2 (relative expression 0.32±0.11 vs. 1.14±0.14, P<0.05), and P-p90RSK (relative expression 0.43±0.14 vs. 1.15±0.07, P<0.05) decreased in the JWH133 intervention group. The type Ⅰ collagen mRNA (2.190±0.362 vs. 5.078±0.792, P<0.05), type Ⅲ collagen mRNA (1.750±0.290 vs. 4.935±0.456, P<0.05), and α-SMA mRNA (1.588±0.060 vs. 5.192±0.506, P<0.05) decreased. Compared with the JWH133 intervention group, the JWH133+AM630 antagonistic group increased the expression of α-SMA, type Ⅲ collagen, P-ERK1/2, and P-p90RSK protein in the lung tissue of mice, and increased the expression of type Ⅲ collagen and α-SMA mRNA. Conclusion: In mice with bleomycin-induced pulmonary fibrosis, the cannabinoid type-2 receptor agonist JWH133 inhibited inflammation and improved extracellular matrix deposition, which alleviated lung fibrosis. The underlying mechanism of action may be related to the activation of the ERK1/2-RSK1 signaling pathway.
Mice
;
Male
;
Animals
;
Pulmonary Fibrosis/pathology*
;
Cannabinoid Receptor Agonists/metabolism*
;
Collagen Type I/pharmacology*
;
Collagen Type III/pharmacology*
;
Hydroxyproline/pharmacology*
;
Sodium Chloride/metabolism*
;
Mice, Inbred C57BL
;
Lung/pathology*
;
Cannabinoids/adverse effects*
;
Bleomycin/metabolism*
;
Collagen/metabolism*
;
Inflammation/pathology*
;
RNA, Messenger/metabolism*
2.Shenmai Injection Improves Hypertensive Heart Failure by Inhibiting Myocardial Fibrosis via TGF-β 1/Smad Pathway Regulation.
Si-Yuan HU ; Yao ZHOU ; Sen-Jie ZHONG ; Meng YANG ; Shu-Min HUANG ; Lin LI ; Xin-Chun LI ; Zhi-Xi HU
Chinese journal of integrative medicine 2023;29(2):119-126
OBJECTIVE:
To study effects of Shenmai Injection on hypertensive heart failure and its mechanism for inhibiting myocardial fibrosis.
METHODS:
Salt-sensitive (Dahl/SS) rats were fed with normal diet (0.3% NaCl) and the high-salt diet (8% NaCl) to observe the changes in blood pressure and heart function, as the control group and the model group. Salt-insensitive rats (SS-13BN) were fed with the high-salt diet (8% NaCl) as the negative control group. After modeling, the model rats were randomly divided into heart failure (HF) group, Shenmai Injection (SMI) group and pirfenidone (PFD) group by a random number table, with 6 rats in each group. They were given sterilized water, SMI and pirfenidone, respectively. Blood pressure, cardiac function, fibrosis and related molecular expression were detected by sphygmomanometer, echocardiogram, enzyme linked immunosorbent assay (ELISA), hematoxylin-eosin staining, Masson staining, immunofluorescence and qPCR analysis.
RESULTS:
After high-salt feeding, compared with the control and negative control group, in the model group the blood pressure increased significantly, the left ventricular ejection fraction (LVEF) and left ventricular fraction shortening (LVFS) were significantly reduced, and the serum NT-proBNP concentration increased significantly (all P<0.05); furthermore, the arrangement of myocardial cells was disordered, the edema was severe, and the degree of myocardial fibrosis was also significantly increased (P<0.05); the protein and mRNA expressions of collagen type I (Col I) were up-regulated (P<0.05), and the mRNA expressions of transforming growth factor β 1 (TGF- β 1), Smad2 and Smad3 were significantly up-regulated (P<0.05). Compared with HF group, after intervention of Shenmai Injection, LVEF and LVFS increased, myocardial morphology was improved, collagen volume fraction decreased significantly (P<0.05), and the mRNA expressions of Col I, TGF- β 1, Smad2 and Smad3, as well as Col I protein expression, were all significantly down-regulated (all P<0.05).
CONCLUSION
Myocardial fibrosis is the main pathological manifestation of hypertensive heart failure, and Shenmai Injection could inhibit myocardial fibrosis and effectively improve heart failure by regulating TGF-β 1/Smad signaling pathway.
Rats
;
Animals
;
Stroke Volume
;
Sodium Chloride
;
Rats, Inbred Dahl
;
Ventricular Function, Left
;
Heart Failure
;
Transforming Growth Factor beta1/metabolism*
;
Hypertension
;
Fibrosis
;
RNA, Messenger
3.Mechanism of protective effect of resveratrol on poor ovarian response in mice.
Jian-Heng HAO ; Yue-Meng ZHAO ; Hai-Jun WANG ; Yu-Xia CAO ; Ying LAN ; Lai-Xi JI
China Journal of Chinese Materia Medica 2023;48(21):5888-5897
This study aims to investigate the therapeutic effects and potential mechanisms of resveratrol(Res) on poor ovarian response(POR) in mice. The common target genes shared by Res and POR were predicted by network pharmacology, used for Gene Ontology(GO) annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment, and then validated by animal experiments. The mice with regular estrous cycle after screening were randomized into normal, POR, and low-and high-dose(20 and 40 mg·kg~(-1), respectively) Res groups. The normal group was administrated with an equal volume of 0.9% sodium chloride solution by gavage, and the mice in other groups with tripterygium glycosides suspension(50 mg·kg~(-1)) by gavage for 2 weeks. After the modeling, the mice in low-and high-dose Res groups were treated with Res by gavage for 2 weeks, and the mice in normal and POR groups with an equal volume of 0.9% sodium chloride solution by gavage. Ovulation induction and sample collection were carried out on the day following the end of treatment. Vaginal smears were collected for observation of the changes in the estrous cycle, the counting of retrieved oocytes, and the measurement of ovarian wet weight and ovarian index. The enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of anti-mullerian hormone(AMH), follicle-stimulating hormone(FSH), estradiol(E_2), and luteinizing hormone(LH) in the serum. The ovarian tissue morphology and granulosa cell apoptosis were observed by hematoxylin-eosin(HE) staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL), respectively. Western blot was employed to determine the protein levels of phosphatidylinositol 3-kinase(PI3K), protein kinase B(AKT), forkhead box O(FOXO) 3a, hypoxia-inducible factor(HIF)-1α, B-cell lymphoma-2(Bcl-2), and Bcl-2-associated X protein(Bax). A total of 222 common targets shared by Res and POR were collected. GO annotation indicated that these targets were mainly involved in oxidative stress response. KEGG enrichment analysis revealed that Res can intervene in POR via PI3K/AKT, HIF-1, and FOXO signaling pathways. Animal experiments showed that the model group had higher rate of estrous cycle disorders, lower number and poorer morphology of normally developed follicles at all levels, more atretic follicles, higher apoptosis of ovarian granulosa cells, lower number of retrieved oocytes, lower ovarian wet weight and ovarian index, higher serum levels of FSH and LH, lower levels of AMH and E_2, higher expression levels of HIF-1α, FOXO3a and Bax, and lower expression levels of PI3K, AKT, and Bcl-2 in the ovarian tissue than the normal group. Compared with the POR group, low-and high-dose Res decreased the rate of estrous cycle disorders, improved the follicle number and morphology, reduced atretic follicles, promoted the apoptosis of ovarian granulosa cells, increased retrieved oocytes, ovarian wet weight and ovarian index, and lowered serum FSH and LH levels. Moreover, Res down-regulated the expression levels of HIF-1α, FOXO3a and Bax, and up-regulated the expression levels of PI3K, AKT and Bcl-2 in the ovarian tissue. In summary, Res can inhibit apoptosis and mitigate poor ovarian response in mice by regulating the PI3K/AKT/FOXO3a and HIF-1α pathways.
Female
;
Mice
;
Animals
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Resveratrol/pharmacology*
;
bcl-2-Associated X Protein
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Sodium Chloride
;
Follicle Stimulating Hormone
;
Proto-Oncogene Proteins c-bcl-2
4.Analgesic effect and mechanism of electroacupuncture on SNI rats based on microglia-BDNF-neuron signal.
Dian-Ping YANG ; Ying ZHANG ; Pei-Min LIN ; An-Qiong MAO ; Qing LIU
Chinese Acupuncture & Moxibustion 2022;42(9):1029-1036
OBJECTIVE:
To observe the effect of electroacupuncture (EA) at "Huantiao" (GB 30) and "Weizhong" (BL 40) on the activation of glial cells, the expression of brain-derived neurotrophic factor (BDNF), excitability and the number of dendritic spines of neurons in the spinal dorsal horn in rats with spared nerve injury (SNI) of sciatic nerve, and to explore the analgesic mechanism of EA on SNI.
METHODS:
PartⅠ: Sixty SD rats were randomly divided into a sham operation group, a model group, an EA group and a sham EA group, 15 rats in each group. Except the sham operation group, the SNI rat model was established in the remaining groups. The rats in the sham operation group were only treated with incision without damaging the nerve. The rats in the EA group were treated with EA at "Huantiao" (GB 30) and "Weizhong" (BL 40) on the affected side, continuous wave, frequency of 2 Hz, current intensity of 1 mA, 30 minutes each time, once a day, for 14 days. The rats in the sham EA group were treated with EA at points 0.5 cm next to "Huantiao" (GB 30) and "Weizhong" (BL 40) on the affected side; the manipulation, EA parameters and treatment course were the same as the EA group. The latency of thermal foot contraction reflex and the threshold of mechanical foot contraction reflex were detected 1 day before modeling and 3, 7 and 14 days after modeling. Fourteen days after modeling, Western blot was used to detect the protein expressions of ionized binding adapter junction protein 1 (Iba-1), glial fibrillary acidic protein (GFAP), BDNF and c-Fos in the spinal dorsal horn; the expressions of Iba-1 and c-Fos proteins in the spinal dorsal horn were detected by immunofluorescence staining; immunohistochemical method was used to detect the expression of GFAP protein in the spinal dorsal horn; Golgi staining was used to detect the number of dendritic spines in spinal dorsal horn neurons. PartⅡ: Thirty SD rats were randomly divided into a control group, a BDNF group and a BDNF+anti-TrkB group, 10 rats in each group. The control group was treated with intrathecal injection of 10 μL mixture with 1︰1 of 0.9% sodium chloride solution and dimethyl sulfoxide (DMSO); the BDNF group was treated with intrathecal injection of 10 μg rat recombinant BDNF dissolved in 10 μL mixture with 1︰1 of 0.9% sodium chloride solution and DMSO; the BDNF+anti-TrkB group was treated with intrathecal injection of 10 μg rat recombinant BDNF and 30 μg tyrosine kinase receptor B (TrkB) antibody dissolved in 10 μL mixture with 1︰1 of 0.9% sodium chloride solution and DMSO. The threshold of mechanical foot retraction reflex was detected 1 day before intrathecal injection and 1, 3 and 7 days after injection. Seven days after injection, the expression of c-Fos protein in the spinal dorsal horn was detected by Western blot and immunofluorescence staining.
RESULTS:
PartⅠ: Compared with the sham operation group, 3, 7 and 14 days after modeling, the latency of thermal foot contraction reflex and the threshold of mechanical foot contraction reflex in the model group were decreased (P<0.05); 7 and 14 days after modeling, compared with the model group, the latency of thermal foot contraction reflex and the threshold of mechanical foot contraction reflex in the EA group were increased (P<0.05). The expressions of Iba-1, GFAP, BDNF, c-Fos proteins and the number of neuronal dendritic spines in the spinal dorsal horn in the model group were higher than those in the sham operation group (P<0.05); the expressions of Iba-1, BDNF, c-Fos proteins and the number of neuronal dendritic spines in the EA group were lower than those in the model group (P<0.05). PartⅡ: 3 and 7 days after intrathecal injection, the threshold of mechanical foot retraction reflex in the BDNF group was lower than that in the control group (P<0.05); the threshold of mechanical foot retraction reflex in the BDNF+anti-TrkB group was higher than that in the BDNF group (P<0.05). The expression of c-Fos protein in spinal dorsal horn in the BDNF group was higher than that in the control group (P<0.05); the expression of c-Fos protein in spinal dorsal horn in the BDNF+anti-TrkB group was lower than that in the BDNF group (P<0.05).
CONCLUSION
The analgesic effect of EA at "Huantiao" (GB 30) and "Weizhong" (BL 40) on SNI rats may be related to inhibiting the activation of microglia in the dorsal horn of the spinal cord, thereby blocking the signal of microglia-BDNF-neuron, and finally reducing the excitability of neurons.
Analgesics
;
Animals
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Dimethyl Sulfoxide/metabolism*
;
Electroacupuncture
;
Microglia
;
Neuralgia/therapy*
;
Neurons
;
Proto-Oncogene Proteins c-fos/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Sodium Chloride/metabolism*
;
Spinal Cord/metabolism*
5.The renal metabolic mechanism of salt sensitive hypertension in Dahl-SS rats.
Meng CHEN ; Peng-Fei YANG ; Zhong-Min TIAN
Acta Physiologica Sinica 2022;74(1):47-58
The kidney is one of the main target organs involved in hypertension, and it regulates water and salt metabolism, blood volume and vascular resistance. High salt intake induces salt and water retention, persistent endothelial dysfunction and elevation of blood pressure in salt sensitive individuals. Dahl salt sensitive (Dahl-SS) rats, as a classic animal model for salt sensitive hypertension, have many similar stably inherited physiological characteristics to human with salt sensitive hypertension, such as salt sensitivity, hyperlipidemia, insulin resistance, renal failure, increased urinary protein secretion and low plasma renin activity. Based on renal physiology and biochemistry researches and multi-omics analyses in Dahl-SS rats, this review will summarize the relationship between salt sensitive hypertension and renal redox, NO, amino acids, glucose and lipid metabolism.
Animals
;
Blood Pressure
;
Hypertension
;
Kidney/metabolism*
;
Rats
;
Rats, Inbred Dahl
;
Sodium Chloride, Dietary
6.Nitrogen metabolism and secondary metabolism regulation of Atropa belladonna by exogenous NO under NaCl stress.
Huan-Huan DAI ; Yi YANG ; Yu-Si SHAN ; Xiao HE ; Zheng-Qi XIN ; Neng-Biao WU
China Journal of Chinese Materia Medica 2020;45(2):321-330
Atropa belladonna seedlings were used as experimental materials and cultivated by soil culture method. Different concentrations(0,0.05,0.1,0.2,0.5 mmol·L~(-1))of NO donor sodium nitroprusside(SNP) were sprayed on the leaves. The effects of different concentrations of SNP and different treatment time(4,8,12,16 d) on nitrogen metabolism, secondary metabolite content, precursor content of tropane alkaloid synthesis pathway and expression of key enzyme genes under 100 mmol·L~(-1) NaCl stress were studied. The results showed that with the prolongation of salt stress, the nitrogen metabolism and the accumulation of secondary metabolites of A. belladonna were inhibited to some extent. After treatment with different concentrations of exogenous SNP, the ammonium nitrogen content decreased dramatically, and the contents of nitrate nitrogen, free amino acid, soluble protein and the activities of key enzymes of nitrogen metabolism(NR, GS, GDH) were all greatly improved; the contents of precursor amino acids(ornithine, arginine) and polyamines(Put, Spd, Spm) in the secondary metabolic pathway have increased to varying degrees. The qRT-PCR analysis showed that exogenous SNP treatment can effectively promote the high expression of key enzyme genes PMT, TRⅠ and H6H in the secondary metabolic pathway of A. belladonna, and the production of hyoscyamine and scopolamine were increased notably. In summary, the application of appropriate concentration of SNP can effectively alleviate the inhibition of salt stress on the nitrogen metabolism and secondary metabolism of Atropa belladonna, and enhance its salt tolerance. Overall, 0.1 mmol·L~(-1) and 0.2 mmol·L~(-1) SNP treatment achieved the most remarkable effect.
Atropa belladonna/metabolism*
;
Hyoscyamine/analysis*
;
Nitrogen/metabolism*
;
Nitroprusside
;
Scopolamine/analysis*
;
Secondary Metabolism
;
Sodium Chloride
;
Stress, Physiological
7.Chronic Intracerebroventricular Infusion of Metformin Inhibits Salt-Sensitive Hypertension via Attenuation of Oxidative Stress and Neurohormonal Excitation in Rat Paraventricular Nucleus.
Xiao-Jing YU ; Ya-Nan ZHAO ; Yi-Kang HOU ; Hong-Bao LI ; Wen-Jie XIA ; Hong-Li GAO ; Kai-Li LIU ; Qing SU ; Hui-Yu YANG ; Bin LIANG ; Wen-Sheng CHEN ; Wei CUI ; Ying LI ; Guo-Qing ZHU ; Zhi-Ming YANG ; Yu-Ming KANG
Neuroscience Bulletin 2019;35(1):57-66
Metformin (MET), an antidiabetic agent, also has antioxidative effects in metabolic-related hypertension. This study was designed to determine whether MET has anti-hypertensive effects in salt-sensitive hypertensive rats by inhibiting oxidative stress in the hypothalamic paraventricular nucleus (PVN). Salt-sensitive rats received a high-salt (HS) diet to induce hypertension, or a normal-salt (NS) diet as control. At the same time, they received intracerebroventricular (ICV) infusion of MET or vehicle for 6 weeks. We found that HS rats had higher oxidative stress levels and mean arterial pressure (MAP) than NS rats. ICV infusion of MET attenuated MAP and reduced plasma norepinephrine levels in HS rats. It also decreased reactive oxygen species and the expression of subunits of NAD(P)H oxidase, improved the superoxide dismutase activity, reduced components of the renin-angiotensin system, and altered neurotransmitters in the PVN. Our findings suggest that central MET administration lowers MAP in salt-sensitive hypertension via attenuating oxidative stress, inhibiting the renin-angiotensin system, and restoring the balance between excitatory and inhibitory neurotransmitters in the PVN.
Animals
;
Antioxidants
;
therapeutic use
;
Arterial Pressure
;
drug effects
;
Hypertension
;
chemically induced
;
drug therapy
;
Infusions, Intraventricular
;
Male
;
Metformin
;
administration & dosage
;
pharmacology
;
Neurotransmitter Agents
;
metabolism
;
Oxidative Stress
;
drug effects
;
Paraventricular Hypothalamic Nucleus
;
drug effects
;
Rats
;
Reactive Oxygen Species
;
metabolism
;
Sodium Chloride, Dietary
;
pharmacology
8.Blockade of Endogenous Angiotensin-(1-7) in Hypothalamic Paraventricular Nucleus Attenuates High Salt-Induced Sympathoexcitation and Hypertension.
Xiao-Jing YU ; Yu-Wang MIAO ; Hong-Bao LI ; Qing SU ; Kai-Li LIU ; Li-Yan FU ; Yi-Kang HOU ; Xiao-Lian SHI ; Ying LI ; Jian-Jun MU ; Wen-Sheng CHEN ; Wei CUI ; Guo-Qing ZHU ; Philip J EBENEZER ; Joseph FRANCIS ; Yu-Ming KANG
Neuroscience Bulletin 2019;35(1):47-56
Angiotensin (Ang)-(1-7) is an important biologically-active peptide of the renin-angiotensin system. This study was designed to determine whether inhibition of Ang-(1-7) in the hypothalamic paraventricular nucleus (PVN) attenuates sympathetic activity and elevates blood pressure by modulating pro-inflammatory cytokines (PICs) and oxidative stress in the PVN in salt-induced hypertension. Rats were fed either a high-salt (8% NaCl) or a normal salt diet (0.3% NaCl) for 10 weeks, followed by bilateral microinjections of the Ang-(1-7) antagonist A-779 or vehicle into the PVN. We found that the mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA), and plasma norepinephrine (NE) were significantly increased in salt-induced hypertensive rats. The high-salt diet also resulted in higher levels of the PICs interleukin-6, interleukin-1beta, tumor necrosis factor alpha, and monocyte chemotactic protein-1, as well as higher gp91 expression and superoxide production in the PVN. Microinjection of A-779 (3 nmol/50 nL) into the bilateral PVN of hypertensive rats not only attenuated MAP, RSNA, and NE, but also decreased the PICs and oxidative stress in the PVN. These results suggest that the increased MAP and sympathetic activity in salt-induced hypertension can be suppressed by blockade of endogenous Ang-(1-7) in the PVN, through modulation of PICs and oxidative stress.
Angiotensin I
;
antagonists & inhibitors
;
metabolism
;
Animals
;
Antioxidants
;
pharmacology
;
Blood Pressure
;
drug effects
;
Hypertension
;
chemically induced
;
drug therapy
;
Male
;
Oxidative Stress
;
drug effects
;
Paraventricular Hypothalamic Nucleus
;
drug effects
;
Peptide Fragments
;
antagonists & inhibitors
;
metabolism
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species
;
metabolism
;
Sodium Chloride, Dietary
;
pharmacology
9.New advances in renal mechanisms of high fructose-induced salt-sensitive hypertension.
Acta Physiologica Sinica 2018;70(6):581-590
Fructose intake has increased dramatically over the past century and the upward trend has continued until recently. Increasing evidence suggests that the excessive intake of fructose induces salt-sensitive hypertension. While the underlying mechanism is complex, the kidney likely plays a major role. This review will highlight recent advances in the renal mechanisms of fructose-induced salt-sensitive hypertension, including (pro)renin receptor-dependent activation of intrarenal renin-angiotensin system, increased nephron Na transport activity via sodium/hydrogen exchanger 3 and Na/K/2Cl cotransporter, increased renal uric acid production, decreased renal nitric oxide production, and increased renal reactive oxygen species production, and suggest actions based on these mechanisms that have therapeutic implications.
Blood Pressure
;
Fructose
;
adverse effects
;
Humans
;
Hypertension
;
chemically induced
;
physiopathology
;
Kidney
;
physiopathology
;
Nitric Oxide
;
metabolism
;
Reactive Oxygen Species
;
metabolism
;
Renin-Angiotensin System
;
Sodium Chloride, Dietary
;
adverse effects
;
Sodium-Hydrogen Exchanger 3
;
metabolism
;
Uric Acid
;
metabolism
10.Hyperbaric Oxygen Pretreatment Improves Cognition and Reduces Hippocampal Damage Via p38 Mitogen-Activated Protein Kinase in a Rat Model.
Baisong ZHAO ; Yongying PAN ; Zixin WANG ; Haiping XU ; Xingrong SONG
Yonsei Medical Journal 2017;58(1):131-138
PURPOSE: To investigate the effects of hyperbaric oxygen (HBO) pretreatment on cognitive decline and neuronal damage in an Alzheimer’s disease (AD) rat model. MATERIALS AND METHODS: Rats were divided into three groups: normal saline (NS), AD, and HBO+AD. In the AD group, amyloid β peptide (Aβ)₁₋₄₀ was injected into the hippocampal CA1 region of the brain. NS rats received NS injection. In the HBO+AD group, rats received 5 days of daily HBO therapy following Aβ₁₋₄₀ injection. Learning and memory capabilities were examined using the Morris water maze task. Neuronal damage and astrocyte activation were evaluated by hematoxylin-eosin staining and immunohistochemistry, respectively. Dendritic spine density was determined by Golgi-Cox staining. Tumor necrosis factor-α, interleukin-1β, and interleukin-10 production was assessed by enzyme-linked immunosorbent assay. Neuron apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling. Protein expression was examined by western blotting. RESULTS: Learning and memory dysfunction was ameliorated in the HBO+AD group, as shown by significantly lower swimming distances and escape latency, compared to the AD group. Lower rates of neuronal damage, astrocyte activation, dendritic spine loss, and hippocampal neuron apoptosis were seen in the HBO+AD than in the AD group. A lower rate of hippocampal p38 mitogen-activated protein kinase (MAPK) phosphorylation was observed in the HBO+AD than in the AD group. CONCLUSION: HBO pretreatment improves cognition and reduces hippocampal damage via p38 MAPK in AD rats.
Alzheimer Disease/*therapy
;
Amyloid beta-Peptides/*administration & dosage
;
Animals
;
Apoptosis
;
*Cognition/drug effects
;
Disease Models, Animal
;
Enzyme-Linked Immunosorbent Assay
;
Hippocampus/*enzymology
;
*Hyperbaric Oxygenation
;
In Situ Nick-End Labeling
;
Interleukin-10/biosynthesis
;
Interleukin-1beta/biosynthesis
;
Learning/drug effects
;
Male
;
Memory/drug effects
;
Neurons
;
Peptide Fragments/*administration & dosage
;
Rats
;
Rats, Sprague-Dawley
;
Sodium Chloride/administration & dosage
;
Tumor Necrosis Factor-alpha/biosynthesis
;
p38 Mitogen-Activated Protein Kinases/*metabolism

Result Analysis
Print
Save
E-mail