1.Antimicrobial activity of water-soluble mangostin derivatives of ethanol extracts of Garcinia mangostana L. peel, and ethanol extracts of Psoralea corylifolia L. fruit and Glycyrrhiza uralensis root on oral bacteria associated with endodontic infections
So Young YOO ; Kyung-Hyun LEE ; Yun Kyong LIM ; Dae Sung LEE ; Joong-Ki KOOK
Korean Journal of Dental Materials 2024;51(2):99-108
This study was performed to evaluate the antibacterial activity of water-soluble mangostin derivatives (WsMD) of the ethanol extract of the peel of Garcinia mangostana L. (mangosteen) and the ethanol extracts of the fruit of Psoralea corylifolia L. and the root of Glycyrrhiza uralensis (licorice) against oral bacteria associated with endodontic infections. Cytotoxicity of the three natural products was tested on human embryonic kidney 293 cells (HEK 293) using the methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay or the cell counting method. Antimicrobial activity was evaluated based on the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The highest concentrations of the WsMD of the ethanol extract of the peel of mangosteen and ethanol extracts of P. corylifolia L. fruit and licorice root without cytotoxic effects on HEK 293 cells were 20, 400, and 320 µg/ml, respectively. The MIC and MBC values of the WsMD of the ethanol extract of the peel of mangosteen and ethanol extracts of P. corylifolia L. fruit against 35 isolates (23 species) of pulpitis- and periapical disease-causative bacteria were 1.25–20 µg/ml and 25–200 µg/ml, respectively, except for Dialister invisus KCOM 1973. The ethanol extract of licorice root had MBC values of 40–320 µg/ml against 27 of 35 bacterial strains. These results showed that the WsMD of the ethanol extract of mangosteen peel had the highest antibacterial activity among the three natural extracts and suggested it as a potential root canal irrigation agent.
2.Association between mechanical power and intensive care unit mortality in Korean patients under pressure-controlled ventilation
Jae Kyeom SIM ; Sang-Min LEE ; Hyung Koo KANG ; Kyung Chan KIM ; Young Sam KIM ; Yun Seong KIM ; Won-Yeon LEE ; Sunghoon PARK ; So Young PARK ; Ju-Hee PARK ; Yun Su SIM ; Kwangha LEE ; Yeon Joo LEE ; Jin Hwa LEE ; Heung Bum LEE ; Chae-Man LIM ; Won-Il CHOI ; Ji Young HONG ; Won Jun SONG ; Gee Young SUH
Acute and Critical Care 2024;39(1):91-99
Mechanical power (MP) has been reported to be associated with clinical outcomes. Because the original MP equation is derived from paralyzed patients under volume-controlled ventilation, its application in practice could be limited in patients receiving pressure-controlled ventilation (PCV). Recently, a simplified equation for patients under PCV was developed. We investigated the association between MP and intensive care unit (ICU) mortality. Methods: We conducted a retrospective analysis of Korean data from the Fourth International Study of Mechanical Ventilation. We extracted data of patients under PCV on day 1 and calculated MP using the following simplified equation: MPPCV = 0.098 ∙ respiratory rate ∙ tidal volume ∙ (ΔPinsp + positive end-expiratory pressure), where ΔPinsp is the change in airway pressure during inspiration. Patients were divided into survivors and non-survivors and then compared. Multivariable logistic regression was performed to determine association between MPPCV and ICU mortality. The interaction of MPPCV and use of neuromuscular blocking agent (NMBA) was also analyzed. Results: A total of 125 patients was eligible for final analysis, of whom 38 died in the ICU. MPPCV was higher in non-survivors (17.6 vs. 26.3 J/min, P<0.001). In logistic regression analysis, only MPPCV was significantly associated with ICU mortality (odds ratio, 1.090; 95% confidence interval, 1.029–1.155; P=0.003). There was no significant effect of the interaction between MPPCV and use of NMBA on ICU mortality (P=0.579). Conclusions: MPPCV is associated with ICU mortality in patients mechanically ventilated with PCV mode, regardless of NMBA use.
3.Association between mechanical power and intensive care unit mortality in Korean patients under pressure-controlled ventilation
Jae Kyeom SIM ; Sang-Min LEE ; Hyung Koo KANG ; Kyung Chan KIM ; Young Sam KIM ; Yun Seong KIM ; Won-Yeon LEE ; Sunghoon PARK ; So Young PARK ; Ju-Hee PARK ; Yun Su SIM ; Kwangha LEE ; Yeon Joo LEE ; Jin Hwa LEE ; Heung Bum LEE ; Chae-Man LIM ; Won-Il CHOI ; Ji Young HONG ; Won Jun SONG ; Gee Young SUH
Acute and Critical Care 2024;39(1):91-99
Mechanical power (MP) has been reported to be associated with clinical outcomes. Because the original MP equation is derived from paralyzed patients under volume-controlled ventilation, its application in practice could be limited in patients receiving pressure-controlled ventilation (PCV). Recently, a simplified equation for patients under PCV was developed. We investigated the association between MP and intensive care unit (ICU) mortality. Methods: We conducted a retrospective analysis of Korean data from the Fourth International Study of Mechanical Ventilation. We extracted data of patients under PCV on day 1 and calculated MP using the following simplified equation: MPPCV = 0.098 ∙ respiratory rate ∙ tidal volume ∙ (ΔPinsp + positive end-expiratory pressure), where ΔPinsp is the change in airway pressure during inspiration. Patients were divided into survivors and non-survivors and then compared. Multivariable logistic regression was performed to determine association between MPPCV and ICU mortality. The interaction of MPPCV and use of neuromuscular blocking agent (NMBA) was also analyzed. Results: A total of 125 patients was eligible for final analysis, of whom 38 died in the ICU. MPPCV was higher in non-survivors (17.6 vs. 26.3 J/min, P<0.001). In logistic regression analysis, only MPPCV was significantly associated with ICU mortality (odds ratio, 1.090; 95% confidence interval, 1.029–1.155; P=0.003). There was no significant effect of the interaction between MPPCV and use of NMBA on ICU mortality (P=0.579). Conclusions: MPPCV is associated with ICU mortality in patients mechanically ventilated with PCV mode, regardless of NMBA use.
4.Association between mechanical power and intensive care unit mortality in Korean patients under pressure-controlled ventilation
Jae Kyeom SIM ; Sang-Min LEE ; Hyung Koo KANG ; Kyung Chan KIM ; Young Sam KIM ; Yun Seong KIM ; Won-Yeon LEE ; Sunghoon PARK ; So Young PARK ; Ju-Hee PARK ; Yun Su SIM ; Kwangha LEE ; Yeon Joo LEE ; Jin Hwa LEE ; Heung Bum LEE ; Chae-Man LIM ; Won-Il CHOI ; Ji Young HONG ; Won Jun SONG ; Gee Young SUH
Acute and Critical Care 2024;39(1):91-99
Mechanical power (MP) has been reported to be associated with clinical outcomes. Because the original MP equation is derived from paralyzed patients under volume-controlled ventilation, its application in practice could be limited in patients receiving pressure-controlled ventilation (PCV). Recently, a simplified equation for patients under PCV was developed. We investigated the association between MP and intensive care unit (ICU) mortality. Methods: We conducted a retrospective analysis of Korean data from the Fourth International Study of Mechanical Ventilation. We extracted data of patients under PCV on day 1 and calculated MP using the following simplified equation: MPPCV = 0.098 ∙ respiratory rate ∙ tidal volume ∙ (ΔPinsp + positive end-expiratory pressure), where ΔPinsp is the change in airway pressure during inspiration. Patients were divided into survivors and non-survivors and then compared. Multivariable logistic regression was performed to determine association between MPPCV and ICU mortality. The interaction of MPPCV and use of neuromuscular blocking agent (NMBA) was also analyzed. Results: A total of 125 patients was eligible for final analysis, of whom 38 died in the ICU. MPPCV was higher in non-survivors (17.6 vs. 26.3 J/min, P<0.001). In logistic regression analysis, only MPPCV was significantly associated with ICU mortality (odds ratio, 1.090; 95% confidence interval, 1.029–1.155; P=0.003). There was no significant effect of the interaction between MPPCV and use of NMBA on ICU mortality (P=0.579). Conclusions: MPPCV is associated with ICU mortality in patients mechanically ventilated with PCV mode, regardless of NMBA use.
5.Association between mechanical power and intensive care unit mortality in Korean patients under pressure-controlled ventilation
Jae Kyeom SIM ; Sang-Min LEE ; Hyung Koo KANG ; Kyung Chan KIM ; Young Sam KIM ; Yun Seong KIM ; Won-Yeon LEE ; Sunghoon PARK ; So Young PARK ; Ju-Hee PARK ; Yun Su SIM ; Kwangha LEE ; Yeon Joo LEE ; Jin Hwa LEE ; Heung Bum LEE ; Chae-Man LIM ; Won-Il CHOI ; Ji Young HONG ; Won Jun SONG ; Gee Young SUH
Acute and Critical Care 2024;39(1):91-99
Mechanical power (MP) has been reported to be associated with clinical outcomes. Because the original MP equation is derived from paralyzed patients under volume-controlled ventilation, its application in practice could be limited in patients receiving pressure-controlled ventilation (PCV). Recently, a simplified equation for patients under PCV was developed. We investigated the association between MP and intensive care unit (ICU) mortality. Methods: We conducted a retrospective analysis of Korean data from the Fourth International Study of Mechanical Ventilation. We extracted data of patients under PCV on day 1 and calculated MP using the following simplified equation: MPPCV = 0.098 ∙ respiratory rate ∙ tidal volume ∙ (ΔPinsp + positive end-expiratory pressure), where ΔPinsp is the change in airway pressure during inspiration. Patients were divided into survivors and non-survivors and then compared. Multivariable logistic regression was performed to determine association between MPPCV and ICU mortality. The interaction of MPPCV and use of neuromuscular blocking agent (NMBA) was also analyzed. Results: A total of 125 patients was eligible for final analysis, of whom 38 died in the ICU. MPPCV was higher in non-survivors (17.6 vs. 26.3 J/min, P<0.001). In logistic regression analysis, only MPPCV was significantly associated with ICU mortality (odds ratio, 1.090; 95% confidence interval, 1.029–1.155; P=0.003). There was no significant effect of the interaction between MPPCV and use of NMBA on ICU mortality (P=0.579). Conclusions: MPPCV is associated with ICU mortality in patients mechanically ventilated with PCV mode, regardless of NMBA use.
6.Incidence and risk factors of nonalcoholic fatty liver disease after pancreaticoduodenectomy in Korea: a multicenter retrospective cohort study
Chang-Sup LIM ; Hongbeom KIM ; In Woong HAN ; Won-Gun YUN ; Eunchae GO ; Jaewon LEE ; Kyung Chul YOON ; So Jeong YOON ; Sang Hyun SHIN ; Jin Seok HEO ; Yong Chan SHIN ; Woohyun JUNG
Annals of Clinical Nutrition and Metabolism 2024;16(3):125-133
Purpose:
This study aimed to investigate the incidence, risk factors, and clinical course of nonalcoholic fatty liver disease (NAFLD) following pancreaticoduodenectomy, focusing on the role of adjuvant chemotherapy and other metabolic changes.
Methods:
A retrospective analysis was conducted on 189 patients who underwent pancreaticoduodenectomy between 2013 and 2016. NAFLD was diagnosed using computed tomography (CT) imaging, defined as a liver-tospleen attenuation ratio <0.9. Sarcopenia and sarcopenic obesity were assessed using preoperative CT scans. Logistic regression analysis was performed to identify risk factors for NAFLD development.
Results:
The cumulative incidence of NAFLD increased over time, with rates of 15.9% at one year, 20.4% at three years, and 35.2% at five years post-pancreaticoduodenectomy. Adjuvant chemotherapy was identified as the only significant independent predictor of NAFLD development (odds ratio, 2.74; 95% confidence interval, 1.16-6.70; P=0.023). No significant associations were found between NAFLD and pancreatic enzyme replacement therapy (PERT), sarcopenia, or sarcopenic obesity. Serial analysis of NAFLD status in long-term survivors revealed dynamic changes, with some patients experiencing spontaneous remission or recurrence.
Conclusion
NAFLD is a common, progressive complication following pancreaticoduodenectomy, particularly in patients receiving adjuvant chemotherapy. Although no significant associations with PERT or sarcopenia were observed, these areas warrant further investigation. Long-term monitoring and targeted management strategies are recommended to address NAFLD in this population. Future prospective studies are needed to elucidate the natural history and contributing factors of NAFLD after pancreaticoduodenectomy.
7.Incidence and risk factors of nonalcoholic fatty liver disease after pancreaticoduodenectomy in Korea: a multicenter retrospective cohort study
Chang-Sup LIM ; Hongbeom KIM ; In Woong HAN ; Won-Gun YUN ; Eunchae GO ; Jaewon LEE ; Kyung Chul YOON ; So Jeong YOON ; Sang Hyun SHIN ; Jin Seok HEO ; Yong Chan SHIN ; Woohyun JUNG
Annals of Clinical Nutrition and Metabolism 2024;16(3):125-133
Purpose:
This study aimed to investigate the incidence, risk factors, and clinical course of nonalcoholic fatty liver disease (NAFLD) following pancreaticoduodenectomy, focusing on the role of adjuvant chemotherapy and other metabolic changes.
Methods:
A retrospective analysis was conducted on 189 patients who underwent pancreaticoduodenectomy between 2013 and 2016. NAFLD was diagnosed using computed tomography (CT) imaging, defined as a liver-tospleen attenuation ratio <0.9. Sarcopenia and sarcopenic obesity were assessed using preoperative CT scans. Logistic regression analysis was performed to identify risk factors for NAFLD development.
Results:
The cumulative incidence of NAFLD increased over time, with rates of 15.9% at one year, 20.4% at three years, and 35.2% at five years post-pancreaticoduodenectomy. Adjuvant chemotherapy was identified as the only significant independent predictor of NAFLD development (odds ratio, 2.74; 95% confidence interval, 1.16-6.70; P=0.023). No significant associations were found between NAFLD and pancreatic enzyme replacement therapy (PERT), sarcopenia, or sarcopenic obesity. Serial analysis of NAFLD status in long-term survivors revealed dynamic changes, with some patients experiencing spontaneous remission or recurrence.
Conclusion
NAFLD is a common, progressive complication following pancreaticoduodenectomy, particularly in patients receiving adjuvant chemotherapy. Although no significant associations with PERT or sarcopenia were observed, these areas warrant further investigation. Long-term monitoring and targeted management strategies are recommended to address NAFLD in this population. Future prospective studies are needed to elucidate the natural history and contributing factors of NAFLD after pancreaticoduodenectomy.
8.Incidence and risk factors of nonalcoholic fatty liver disease after pancreaticoduodenectomy in Korea: a multicenter retrospective cohort study
Chang-Sup LIM ; Hongbeom KIM ; In Woong HAN ; Won-Gun YUN ; Eunchae GO ; Jaewon LEE ; Kyung Chul YOON ; So Jeong YOON ; Sang Hyun SHIN ; Jin Seok HEO ; Yong Chan SHIN ; Woohyun JUNG
Annals of Clinical Nutrition and Metabolism 2024;16(3):125-133
Purpose:
This study aimed to investigate the incidence, risk factors, and clinical course of nonalcoholic fatty liver disease (NAFLD) following pancreaticoduodenectomy, focusing on the role of adjuvant chemotherapy and other metabolic changes.
Methods:
A retrospective analysis was conducted on 189 patients who underwent pancreaticoduodenectomy between 2013 and 2016. NAFLD was diagnosed using computed tomography (CT) imaging, defined as a liver-tospleen attenuation ratio <0.9. Sarcopenia and sarcopenic obesity were assessed using preoperative CT scans. Logistic regression analysis was performed to identify risk factors for NAFLD development.
Results:
The cumulative incidence of NAFLD increased over time, with rates of 15.9% at one year, 20.4% at three years, and 35.2% at five years post-pancreaticoduodenectomy. Adjuvant chemotherapy was identified as the only significant independent predictor of NAFLD development (odds ratio, 2.74; 95% confidence interval, 1.16-6.70; P=0.023). No significant associations were found between NAFLD and pancreatic enzyme replacement therapy (PERT), sarcopenia, or sarcopenic obesity. Serial analysis of NAFLD status in long-term survivors revealed dynamic changes, with some patients experiencing spontaneous remission or recurrence.
Conclusion
NAFLD is a common, progressive complication following pancreaticoduodenectomy, particularly in patients receiving adjuvant chemotherapy. Although no significant associations with PERT or sarcopenia were observed, these areas warrant further investigation. Long-term monitoring and targeted management strategies are recommended to address NAFLD in this population. Future prospective studies are needed to elucidate the natural history and contributing factors of NAFLD after pancreaticoduodenectomy.
9.Incidence and risk factors of nonalcoholic fatty liver disease after pancreaticoduodenectomy in Korea: a multicenter retrospective cohort study
Chang-Sup LIM ; Hongbeom KIM ; In Woong HAN ; Won-Gun YUN ; Eunchae GO ; Jaewon LEE ; Kyung Chul YOON ; So Jeong YOON ; Sang Hyun SHIN ; Jin Seok HEO ; Yong Chan SHIN ; Woohyun JUNG
Annals of Clinical Nutrition and Metabolism 2024;16(3):125-133
Purpose:
This study aimed to investigate the incidence, risk factors, and clinical course of nonalcoholic fatty liver disease (NAFLD) following pancreaticoduodenectomy, focusing on the role of adjuvant chemotherapy and other metabolic changes.
Methods:
A retrospective analysis was conducted on 189 patients who underwent pancreaticoduodenectomy between 2013 and 2016. NAFLD was diagnosed using computed tomography (CT) imaging, defined as a liver-tospleen attenuation ratio <0.9. Sarcopenia and sarcopenic obesity were assessed using preoperative CT scans. Logistic regression analysis was performed to identify risk factors for NAFLD development.
Results:
The cumulative incidence of NAFLD increased over time, with rates of 15.9% at one year, 20.4% at three years, and 35.2% at five years post-pancreaticoduodenectomy. Adjuvant chemotherapy was identified as the only significant independent predictor of NAFLD development (odds ratio, 2.74; 95% confidence interval, 1.16-6.70; P=0.023). No significant associations were found between NAFLD and pancreatic enzyme replacement therapy (PERT), sarcopenia, or sarcopenic obesity. Serial analysis of NAFLD status in long-term survivors revealed dynamic changes, with some patients experiencing spontaneous remission or recurrence.
Conclusion
NAFLD is a common, progressive complication following pancreaticoduodenectomy, particularly in patients receiving adjuvant chemotherapy. Although no significant associations with PERT or sarcopenia were observed, these areas warrant further investigation. Long-term monitoring and targeted management strategies are recommended to address NAFLD in this population. Future prospective studies are needed to elucidate the natural history and contributing factors of NAFLD after pancreaticoduodenectomy.
10.Incidence and risk factors of nonalcoholic fatty liver disease after pancreaticoduodenectomy in Korea: a multicenter retrospective cohort study
Chang-Sup LIM ; Hongbeom KIM ; In Woong HAN ; Won-Gun YUN ; Eunchae GO ; Jaewon LEE ; Kyung Chul YOON ; So Jeong YOON ; Sang Hyun SHIN ; Jin Seok HEO ; Yong Chan SHIN ; Woohyun JUNG
Annals of Clinical Nutrition and Metabolism 2024;16(3):125-133
Purpose:
This study aimed to investigate the incidence, risk factors, and clinical course of nonalcoholic fatty liver disease (NAFLD) following pancreaticoduodenectomy, focusing on the role of adjuvant chemotherapy and other metabolic changes.
Methods:
A retrospective analysis was conducted on 189 patients who underwent pancreaticoduodenectomy between 2013 and 2016. NAFLD was diagnosed using computed tomography (CT) imaging, defined as a liver-tospleen attenuation ratio <0.9. Sarcopenia and sarcopenic obesity were assessed using preoperative CT scans. Logistic regression analysis was performed to identify risk factors for NAFLD development.
Results:
The cumulative incidence of NAFLD increased over time, with rates of 15.9% at one year, 20.4% at three years, and 35.2% at five years post-pancreaticoduodenectomy. Adjuvant chemotherapy was identified as the only significant independent predictor of NAFLD development (odds ratio, 2.74; 95% confidence interval, 1.16-6.70; P=0.023). No significant associations were found between NAFLD and pancreatic enzyme replacement therapy (PERT), sarcopenia, or sarcopenic obesity. Serial analysis of NAFLD status in long-term survivors revealed dynamic changes, with some patients experiencing spontaneous remission or recurrence.
Conclusion
NAFLD is a common, progressive complication following pancreaticoduodenectomy, particularly in patients receiving adjuvant chemotherapy. Although no significant associations with PERT or sarcopenia were observed, these areas warrant further investigation. Long-term monitoring and targeted management strategies are recommended to address NAFLD in this population. Future prospective studies are needed to elucidate the natural history and contributing factors of NAFLD after pancreaticoduodenectomy.

Result Analysis
Print
Save
E-mail