1.Development of a Machine LearningPowered Optimized Lung Allocation System for Maximum Benefits in Lung Transplantation: A Korean National Data
Mihyang HA ; Woo Hyun CHO ; Min Wook SO ; Daesup LEE ; Yun Hak KIM ; Hye Ju YEO
Journal of Korean Medical Science 2025;40(7):e18-
Background:
An ideal lung allocation system should reduce waiting list deaths, improve transplant survival, and ensure equitable organ allocation. This study aimed to develop a novel lung allocation score (LAS) system, the MaxBenefit LAS, to maximize transplant benefits.
Methods:
This study retrospectively analyzed data from the Korean Network for Organ Sharing database, including 1,599 lung transplant candidates between September 2009 and December 2020. We developed the MaxBenefit LAS, combining a waitlist mortality model and a post-transplant survival model using elastic-net Cox regression, was assessed using area under the curve (AUC) values and Uno’s C-index. Its performance was compared to the US LAS in an independent cohort.
Results:
The waitlist mortality model showed strong predictive performance with AUC values of 0.834 and 0.818 in the training and validation cohorts, respectively. The post-transplant survival model also demonstrated good predictive ability (AUC: 0.708 and 0.685). The MaxBenefit LAS effectively stratified patients by risk, with higher scores correlating with increased waitlist mortality and decreased post-transplant mortality. The MaxBenefit LAS outperformed the conventional LAS in predicting waitlist death and identifying candidates with higher transplant benefits.
Conclusion
The MaxBenefit LAS offers a promising approach to optimizing lung allocation by balancing the urgency of candidates with their likelihood of survival post-transplant. This novel system has the potential to improve outcomes for lung transplant recipients and reduce waitlist mortality, providing a more equitable allocation of donor lungs.
2.Dementia Overdiagnosis in Younger, Higher Educated Individuals Based on MMSE Alone: Analysis Using Deep Learning Technology
Hye-Geum KIM ; Dai-Seg BAI ; Bon-Hoon KOO ; Eun-Jin CHEON ; Seokho YUN ; So Hye JO ; Byoungyoung GU
Journal of Korean Medical Science 2025;40(9):e20-
Background:
Dementia is a multifaceted disorder that affects cognitive function, necessitating accurate diagnosis for effective management and treatment. Although the Mini-Mental State Examination (MMSE) is widely used to assess cognitive impairment, its standalone efficacy is debated. This study examined the effectiveness of the MMSE alone versus in combination with other cognitive assessments in predicting dementia diagnosis, with the aim of refining the diagnostic accuracy for dementia.
Methods:
A total of 2,863 participants with subjective cognitive complaints who underwent comprehensive neuropsychological assessments were included. We developed two random forest models: one using only the MMSE and another incorporating additional cognitive tests.These models were evaluated based on their accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC) on a 70:30 training-to-testing split.
Results:
The MMSE-alone model predicted dementia with an accuracy of 86% and AUC of 0.872. The expanded model demonstrated increased accuracy (88%) and an AUC of 0.934.Notably, 17.46% of the cases were reclassified from dementia to non-dementia category upon including additional tests. Higher educational level and younger age were associated with these shifts.
Conclusion
The findings suggest that although the MMSE is a valuable screening tool, it should not be used in isolation to determine dementia severity. The addition of diverse cognitive assessments can significantly enhance diagnostic precision, particularly in younger and more educated populations. Future diagnostic protocols should integrate multifaceted cognitive evaluations to reflect the complexity of dementia accurately.
4.Medical accident compensation systems in obstetrics: a comparison among Korea, Japan, and Taiwan, with suggestions for Korea
Kyong-No LEE ; Sang Hyun KIM ; Se Jin LEE ; Wook JANG ; Sunghun NA ; So Yun KIM
Journal of the Korean Medical Association 2025;68(3):148-156
Korea’s medical accident compensation system is a vital national initiative designed to create a stable environment for both mothers and healthcare professionals. This article examines how Korea's neighboring countries, Taiwan and Japan, operate their obstetric compensation systems to draw lessons and implications for Korea's approach.Current Concepts: Korea's medical malpractice compensation system is fully funded by the government, and the amount is determined by the Compensation Review Committee, which considers the type of accident and, in cases of cerebral palsy, the degree of impairment, with awards reaching up to 30 million won. Japan experienced severe declines in birth rates, a shortage of obstetricians, and the closure of maternity hospitals due to increasing medical litigation. In response, the government ,in 2009, introduced a no-fault obstetric compensation system that covers cerebral palsy cases regardless of negligence. Taiwan faced a surge in medical disputes, particularly in obstetrics and gynecology, with maternal lawsuits comprising 14% of all cases. In 2016, the government introduced the Childbirth Accident Emergency Relief Act, achieving a 93.9% compensation approval rate Discussion and Conclusion: Observing these challenges, young doctors are increasingly dissuaded from pursuing careers in obstetrics and gynecology doctor, thereby accelerating the decline of maternity care services. To maintain a stable medical environment, compensation amounts should be adjusted to reflect actual medical costs, and reimbursement rates for obstetric procedures should be re-evaluated. Drawing on the successful implementations in Japan and Taiwan, South Korea must establish a sustainable and protective obstetric care system at the national level.
5.Development of a Long-Acting Follicle-Stimulating Hormone Using Serum Albumin Fab-Associated Technology for Female Infertility
Daham KIM ; Yoon Hee CHO ; Min Jeong KANG ; So Jeong LEE ; Soohyun LEE ; Bo Hyon YUN ; Hyunjin CHI ; Jeongsuk AN ; Kyungsun LEE ; Jaekyu HAN ; Susan CHI ; Moo Young SONG ; Sang-Hoon CHA ; Eun Jig LEE
Endocrinology and Metabolism 2025;40(1):146-155
Background:
Recombinant human follicle-stimulating hormone (rhFSH) is commonly used to treat female infertility, but its short half-life necessitates multiple doses. Even corifollitropin alfa, with an extended half-life, requires supplementary injections of rhFSH after 7 days. This study aimed to develop and evaluate a long-acting follicle-stimulating hormone (FSH) formulation using anti-serum albumin Fab-associated (SAFA) technology to avoid additional injections and enhance ovarian function.
Methods:
SAFA-FSH was synthesized using a Chinese hamster ovary expression system. Its biological efficacy was confirmed through assays measuring its ability to stimulate cyclic adenosine monophosphate (cAMP) production, estradiol synthesis, and the expression of human cytochrome P450 family 19 subfamily A member 1 (hCYP19α1) and human steroidogenic acute regulatory protein (hSTAR) in human ovarian granulosa (KGN) cells. To evaluate the effects of SAFA-FSH, we compared its impact on serum estradiol levels and ovarian weight increase with that of rhFSH in Sprague-Dawley (SD) rats using the modified Steelman-Pohley test.
Results:
The results indicated that SAFA-FSH induces cAMP synthesis in KGN cells and upregulates the expression of hCYP19α1 and hSTAR in a dose-dependent manner. Female SD rats, aged 21 days, receiving daily subcutaneous human chorionic gonadotropin injections for 5 days exhibited a significant increase in serum estradiol levels and ovarian weight when administered SAFA-FSH on the first day or when given nine injections of rhFSH over 5 days. Notably, the group receiving SAFA-FSH on the first and third days demonstrated an even greater rise in serum estradiol levels and ovarian weight.
Conclusion
These findings suggest that SAFA-FSH presents a promising alternative to current rhFSH treatments for female infertility. However, further research is essential to thoroughly assess its safety and efficacy in clinical contexts.
6.A Novel Point-of-Care Prediction Model for Steatotic Liver Disease:Expected Role of Mass Screening in the Global Obesity Crisis
Jeayeon PARK ; Goh Eun CHUNG ; Yoosoo CHANG ; So Eun KIM ; Won SOHN ; Seungho RYU ; Yunmi KO ; Youngsu PARK ; Moon Haeng HUR ; Yun Bin LEE ; Eun Ju CHO ; Jeong-Hoon LEE ; Su Jong YU ; Jung-Hwan YOON ; Yoon Jun KIM
Gut and Liver 2025;19(1):126-135
Background/Aims:
The incidence of steatotic liver disease (SLD) is increasing across all age groups as the incidence of obesity increases worldwide. The existing noninvasive prediction models for SLD require laboratory tests or imaging and perform poorly in the early diagnosis of infrequently screened populations such as young adults and individuals with healthcare disparities. We developed a machine learning-based point-of-care prediction model for SLD that is readily available to the broader population with the aim of facilitating early detection and timely intervention and ultimately reducing the burden of SLD.
Methods:
We retrospectively analyzed the clinical data of 28,506 adults who had routine health check-ups in South Korea from January to December 2022. A total of 229,162 individuals were included in the external validation study. Data were analyzed and predictions were made using a logistic regression model with machine learning algorithms.
Results:
A total of 20,094 individuals were categorized into SLD and non-SLD groups on the basis of the presence of fatty liver disease. We developed three prediction models: SLD model 1, which included age and body mass index (BMI); SLD model 2, which included BMI and body fat per muscle mass; and SLD model 3, which included BMI and visceral fat per muscle mass. In the derivation cohort, the area under the receiver operating characteristic curve (AUROC) was 0.817 for model 1, 0.821 for model 2, and 0.820 for model 3. In the internal validation cohort, 86.9% of individuals were correctly classified by the SLD models. The external validation study revealed an AUROC above 0.84 for all the models.
Conclusions
As our three novel SLD prediction models are cost-effective, noninvasive, and accessible, they could serve as validated clinical tools for mass screening of SLD.
7.Erratum to "Suppression of Lipopolysaccharide-induced Inflammatory and Oxidative Response by 5-Aminolevulinic Acid in RAW 264.7 Macrophages and Zebrafish Larvae" Biomol Ther 29(6), 685-696 (2021)
Seon Yeong JI ; Hee-Jae CHA ; Ilandarage Menu Neelaka MOLAGODA ; Min Yeong KIM ; So Young KIM ; Hyun HWANGBO ; Hyesook LEE ; Gi-Young KIM ; Do-Hyung KIM ; Jin Won HYUN ; Heui-Soo KIM ; Suhkmann KIM ; Cheng-Yun JIN ; Yung Hyun CHOI
Biomolecules & Therapeutics 2025;33(3):554-554
8.Harnessing Institutionally Developed Clinical Targeted Sequencing to Improve Patient Survival in Breast Cancer: A Seven-Year Experience
Jiwon KOH ; Jinyong KIM ; Go-Un WOO ; Hanbaek YI ; So Yean KWON ; Jeongmin SEO ; Jeong Mo BAE ; Jung Ho KIM ; Jae Kyung WON ; Han Suk RYU ; Yoon Kyung JEON ; Dae-Won LEE ; Miso KIM ; Tae-Yong KIM ; Kyung-Hun LEE ; Tae-You KIM ; Jee-Soo LEE ; Moon-Woo SEONG ; Sheehyun KIM ; Sungyoung LEE ; Hongseok YUN ; Myung Geun SONG ; Jaeyong CHOI ; Jong-Il KIM ; Seock-Ah IM
Cancer Research and Treatment 2025;57(2):443-456
Purpose:
Considering the high disease burden and unique features of Asian patients with breast cancer (BC), it is essential to have a comprehensive view of genetic characteristics in this population. An institutional targeted sequencing platform was developed through the Korea Research-Driven Hospitals project and was incorporated into clinical practice. This study explores the use of targeted next-generation sequencing (NGS) and its outcomes in patients with advanced/metastatic BC in the real world.
Materials and Methods:
We reviewed the results of NGS tests administered to BC patients using a customized sequencing platform—FiRST Cancer Panel (FCP)—over 7 years. We systematically described clinical translation of FCP for precise diagnostics, personalized therapeutic strategies, and unraveling disease pathogenesis.
Results:
NGS tests were conducted on 548 samples from 522 patients with BC. Ninety-seven point six percentage of tested samples harbored at least one pathogenic alteration. The common alterations included mutations in TP53 (56.2%), PIK3CA (31.2%), GATA3 (13.8%), BRCA2 (10.2%), and amplifications of CCND1 (10.8%), FGF19 (10.0%), and ERBB2 (9.5%). NGS analysis of ERBB2 amplification correlated well with human epidermal growth factor receptor 2 immunohistochemistry and in situ hybridization. RNA panel analyses found potentially actionable and prognostic fusion genes. FCP effectively screened for potentially germline pathogenic/likely pathogenic mutation. Ten point three percent of BC patients received matched therapy guided by NGS, resulting in a significant overall survival advantage (p=0.022), especially for metastatic BCs.
Conclusion
Clinical NGS provided multifaceted benefits, deepening our understanding of the disease, improving diagnostic precision, and paving the way for targeted therapies. The concrete advantages of FCP highlight the importance of multi-gene testing for BC, especially for metastatic conditions.
9.Development of a Machine LearningPowered Optimized Lung Allocation System for Maximum Benefits in Lung Transplantation: A Korean National Data
Mihyang HA ; Woo Hyun CHO ; Min Wook SO ; Daesup LEE ; Yun Hak KIM ; Hye Ju YEO
Journal of Korean Medical Science 2025;40(7):e18-
Background:
An ideal lung allocation system should reduce waiting list deaths, improve transplant survival, and ensure equitable organ allocation. This study aimed to develop a novel lung allocation score (LAS) system, the MaxBenefit LAS, to maximize transplant benefits.
Methods:
This study retrospectively analyzed data from the Korean Network for Organ Sharing database, including 1,599 lung transplant candidates between September 2009 and December 2020. We developed the MaxBenefit LAS, combining a waitlist mortality model and a post-transplant survival model using elastic-net Cox regression, was assessed using area under the curve (AUC) values and Uno’s C-index. Its performance was compared to the US LAS in an independent cohort.
Results:
The waitlist mortality model showed strong predictive performance with AUC values of 0.834 and 0.818 in the training and validation cohorts, respectively. The post-transplant survival model also demonstrated good predictive ability (AUC: 0.708 and 0.685). The MaxBenefit LAS effectively stratified patients by risk, with higher scores correlating with increased waitlist mortality and decreased post-transplant mortality. The MaxBenefit LAS outperformed the conventional LAS in predicting waitlist death and identifying candidates with higher transplant benefits.
Conclusion
The MaxBenefit LAS offers a promising approach to optimizing lung allocation by balancing the urgency of candidates with their likelihood of survival post-transplant. This novel system has the potential to improve outcomes for lung transplant recipients and reduce waitlist mortality, providing a more equitable allocation of donor lungs.
10.Dementia Overdiagnosis in Younger, Higher Educated Individuals Based on MMSE Alone: Analysis Using Deep Learning Technology
Hye-Geum KIM ; Dai-Seg BAI ; Bon-Hoon KOO ; Eun-Jin CHEON ; Seokho YUN ; So Hye JO ; Byoungyoung GU
Journal of Korean Medical Science 2025;40(9):e20-
Background:
Dementia is a multifaceted disorder that affects cognitive function, necessitating accurate diagnosis for effective management and treatment. Although the Mini-Mental State Examination (MMSE) is widely used to assess cognitive impairment, its standalone efficacy is debated. This study examined the effectiveness of the MMSE alone versus in combination with other cognitive assessments in predicting dementia diagnosis, with the aim of refining the diagnostic accuracy for dementia.
Methods:
A total of 2,863 participants with subjective cognitive complaints who underwent comprehensive neuropsychological assessments were included. We developed two random forest models: one using only the MMSE and another incorporating additional cognitive tests.These models were evaluated based on their accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC) on a 70:30 training-to-testing split.
Results:
The MMSE-alone model predicted dementia with an accuracy of 86% and AUC of 0.872. The expanded model demonstrated increased accuracy (88%) and an AUC of 0.934.Notably, 17.46% of the cases were reclassified from dementia to non-dementia category upon including additional tests. Higher educational level and younger age were associated with these shifts.
Conclusion
The findings suggest that although the MMSE is a valuable screening tool, it should not be used in isolation to determine dementia severity. The addition of diverse cognitive assessments can significantly enhance diagnostic precision, particularly in younger and more educated populations. Future diagnostic protocols should integrate multifaceted cognitive evaluations to reflect the complexity of dementia accurately.

Result Analysis
Print
Save
E-mail