1.Development of automatic organ segmentation based on positron-emission tomography analysis system using Swin UNETR in breast cancer patients in Korea
Dong Hyeok CHOI ; Joonil HWANG ; Hai-Jeon YOON ; So Hyun AHN
The Ewha Medical Journal 2025;48(2):e30-
Purpose:
The standardized uptake value (SUV) is a key quantitative index in nuclear medicine imaging; however, variations in region‐of‐interest (ROI) determination exist across institutions. This study aims to standardize SUV evaluation by introducing a deep learning‐based quantitative analysis method that enhances diagnostic and prognostic accuracy.
Methods:
We used the Swin UNETR model to automatically segment key organs (breast, liver, spleen, and bone marrow) critical for breast cancer prognosis. Tumor segmentation was performed iteratively based on predefined SUV thresholds, and prognostic information was extracted from the liver, spleen, and bone marrow (reticuloendothelial system). The artificial intelligence training process employed 3 datasets: a test dataset (40 patients), a validation dataset (10 patients), and an independent test dataset (10 patients). To validate our approach, we compared the SUV values obtained using our method with those produced by commercial software.
Results:
In a dataset of 10 patients, our method achieved an auto‐segmentation accuracy of 0.9311 for all target organs. Comparison of maximum SUV and mean SUV values from our automated segmentation with those from traditional single‐ROI methods revealed differences of 0.19 and 0.16, respectively, demonstrating improved reliability and accuracy in whole‐organ SUV analysis.
Conclusion
This study successfully standardized SUV calculation in nuclear medicine imaging through deep learning‐based automated organ segmentation and SUV analysis, significantly enhancing accuracy in predicting breast cancer prognosis.
2.Radiofrequency Ablation for Recurrent Thyroid Cancers:2025 Korean Society of Thyroid Radiology Guideline
Eun Ju HA ; Min Kyoung LEE ; Jung Hwan BAEK ; Hyun Kyung LIM ; Hye Shin AHN ; Seon Mi BAEK ; Yoon Jung CHOI ; Sae Rom CHUNG ; Ji-hoon KIM ; Jae Ho SHIN ; Ji Ye LEE ; Min Ji HONG ; Hyun Jin KIM ; Leehi JOO ; Soo Yeon HAHN ; So Lyung JUNG ; Chang Yoon LEE ; Jeong Hyun LEE ; Young Hen LEE ; Jeong Seon PARK ; Jung Hee SHIN ; Jin Yong SUNG ; Miyoung CHOI ; Dong Gyu NA ;
Korean Journal of Radiology 2025;26(1):10-28
Radiofrequency ablation (RFA) is a minimally invasive treatment modality used as an alternative to surgery in patients with benign thyroid nodules, recurrent thyroid cancers (RTCs), and primary thyroid microcarcinomas. The Korean Society of Thyroid Radiology (KSThR) initially developed recommendations for the optimal use of RFA for thyroid tumors in 2009 and revised them in 2012 and 2017. As new meaningful evidence has accumulated since 2017 and in response to a growing global interest in the use of RFA for treating malignant thyroid lesions, the task force committee members of the KSThR decided to update the guidelines on the use of RFA for the management of RTCs based on a comprehensive analysis of current literature and expert consensus.
4.Development of automatic organ segmentation based on positron-emission tomography analysis system using Swin UNETR in breast cancer patients in Korea
Dong Hyeok CHOI ; Joonil HWANG ; Hai-Jeon YOON ; So Hyun AHN
The Ewha Medical Journal 2025;48(2):e30-
Purpose:
The standardized uptake value (SUV) is a key quantitative index in nuclear medicine imaging; however, variations in region‐of‐interest (ROI) determination exist across institutions. This study aims to standardize SUV evaluation by introducing a deep learning‐based quantitative analysis method that enhances diagnostic and prognostic accuracy.
Methods:
We used the Swin UNETR model to automatically segment key organs (breast, liver, spleen, and bone marrow) critical for breast cancer prognosis. Tumor segmentation was performed iteratively based on predefined SUV thresholds, and prognostic information was extracted from the liver, spleen, and bone marrow (reticuloendothelial system). The artificial intelligence training process employed 3 datasets: a test dataset (40 patients), a validation dataset (10 patients), and an independent test dataset (10 patients). To validate our approach, we compared the SUV values obtained using our method with those produced by commercial software.
Results:
In a dataset of 10 patients, our method achieved an auto‐segmentation accuracy of 0.9311 for all target organs. Comparison of maximum SUV and mean SUV values from our automated segmentation with those from traditional single‐ROI methods revealed differences of 0.19 and 0.16, respectively, demonstrating improved reliability and accuracy in whole‐organ SUV analysis.
Conclusion
This study successfully standardized SUV calculation in nuclear medicine imaging through deep learning‐based automated organ segmentation and SUV analysis, significantly enhancing accuracy in predicting breast cancer prognosis.
5.Radiofrequency Ablation for Recurrent Thyroid Cancers:2025 Korean Society of Thyroid Radiology Guideline
Eun Ju HA ; Min Kyoung LEE ; Jung Hwan BAEK ; Hyun Kyung LIM ; Hye Shin AHN ; Seon Mi BAEK ; Yoon Jung CHOI ; Sae Rom CHUNG ; Ji-hoon KIM ; Jae Ho SHIN ; Ji Ye LEE ; Min Ji HONG ; Hyun Jin KIM ; Leehi JOO ; Soo Yeon HAHN ; So Lyung JUNG ; Chang Yoon LEE ; Jeong Hyun LEE ; Young Hen LEE ; Jeong Seon PARK ; Jung Hee SHIN ; Jin Yong SUNG ; Miyoung CHOI ; Dong Gyu NA ;
Korean Journal of Radiology 2025;26(1):10-28
Radiofrequency ablation (RFA) is a minimally invasive treatment modality used as an alternative to surgery in patients with benign thyroid nodules, recurrent thyroid cancers (RTCs), and primary thyroid microcarcinomas. The Korean Society of Thyroid Radiology (KSThR) initially developed recommendations for the optimal use of RFA for thyroid tumors in 2009 and revised them in 2012 and 2017. As new meaningful evidence has accumulated since 2017 and in response to a growing global interest in the use of RFA for treating malignant thyroid lesions, the task force committee members of the KSThR decided to update the guidelines on the use of RFA for the management of RTCs based on a comprehensive analysis of current literature and expert consensus.
7.Development of automatic organ segmentation based on positron-emission tomography analysis system using Swin UNETR in breast cancer patients in Korea
Dong Hyeok CHOI ; Joonil HWANG ; Hai-Jeon YOON ; So Hyun AHN
The Ewha Medical Journal 2025;48(2):e30-
Purpose:
The standardized uptake value (SUV) is a key quantitative index in nuclear medicine imaging; however, variations in region‐of‐interest (ROI) determination exist across institutions. This study aims to standardize SUV evaluation by introducing a deep learning‐based quantitative analysis method that enhances diagnostic and prognostic accuracy.
Methods:
We used the Swin UNETR model to automatically segment key organs (breast, liver, spleen, and bone marrow) critical for breast cancer prognosis. Tumor segmentation was performed iteratively based on predefined SUV thresholds, and prognostic information was extracted from the liver, spleen, and bone marrow (reticuloendothelial system). The artificial intelligence training process employed 3 datasets: a test dataset (40 patients), a validation dataset (10 patients), and an independent test dataset (10 patients). To validate our approach, we compared the SUV values obtained using our method with those produced by commercial software.
Results:
In a dataset of 10 patients, our method achieved an auto‐segmentation accuracy of 0.9311 for all target organs. Comparison of maximum SUV and mean SUV values from our automated segmentation with those from traditional single‐ROI methods revealed differences of 0.19 and 0.16, respectively, demonstrating improved reliability and accuracy in whole‐organ SUV analysis.
Conclusion
This study successfully standardized SUV calculation in nuclear medicine imaging through deep learning‐based automated organ segmentation and SUV analysis, significantly enhancing accuracy in predicting breast cancer prognosis.
8.Radiofrequency Ablation for Recurrent Thyroid Cancers:2025 Korean Society of Thyroid Radiology Guideline
Eun Ju HA ; Min Kyoung LEE ; Jung Hwan BAEK ; Hyun Kyung LIM ; Hye Shin AHN ; Seon Mi BAEK ; Yoon Jung CHOI ; Sae Rom CHUNG ; Ji-hoon KIM ; Jae Ho SHIN ; Ji Ye LEE ; Min Ji HONG ; Hyun Jin KIM ; Leehi JOO ; Soo Yeon HAHN ; So Lyung JUNG ; Chang Yoon LEE ; Jeong Hyun LEE ; Young Hen LEE ; Jeong Seon PARK ; Jung Hee SHIN ; Jin Yong SUNG ; Miyoung CHOI ; Dong Gyu NA ;
Korean Journal of Radiology 2025;26(1):10-28
Radiofrequency ablation (RFA) is a minimally invasive treatment modality used as an alternative to surgery in patients with benign thyroid nodules, recurrent thyroid cancers (RTCs), and primary thyroid microcarcinomas. The Korean Society of Thyroid Radiology (KSThR) initially developed recommendations for the optimal use of RFA for thyroid tumors in 2009 and revised them in 2012 and 2017. As new meaningful evidence has accumulated since 2017 and in response to a growing global interest in the use of RFA for treating malignant thyroid lesions, the task force committee members of the KSThR decided to update the guidelines on the use of RFA for the management of RTCs based on a comprehensive analysis of current literature and expert consensus.
10.Development of automatic organ segmentation based on positron-emission tomography analysis system using Swin UNETR in breast cancer patients in Korea
Dong Hyeok CHOI ; Joonil HWANG ; Hai-Jeon YOON ; So Hyun AHN
The Ewha Medical Journal 2025;48(2):e30-
Purpose:
The standardized uptake value (SUV) is a key quantitative index in nuclear medicine imaging; however, variations in region‐of‐interest (ROI) determination exist across institutions. This study aims to standardize SUV evaluation by introducing a deep learning‐based quantitative analysis method that enhances diagnostic and prognostic accuracy.
Methods:
We used the Swin UNETR model to automatically segment key organs (breast, liver, spleen, and bone marrow) critical for breast cancer prognosis. Tumor segmentation was performed iteratively based on predefined SUV thresholds, and prognostic information was extracted from the liver, spleen, and bone marrow (reticuloendothelial system). The artificial intelligence training process employed 3 datasets: a test dataset (40 patients), a validation dataset (10 patients), and an independent test dataset (10 patients). To validate our approach, we compared the SUV values obtained using our method with those produced by commercial software.
Results:
In a dataset of 10 patients, our method achieved an auto‐segmentation accuracy of 0.9311 for all target organs. Comparison of maximum SUV and mean SUV values from our automated segmentation with those from traditional single‐ROI methods revealed differences of 0.19 and 0.16, respectively, demonstrating improved reliability and accuracy in whole‐organ SUV analysis.
Conclusion
This study successfully standardized SUV calculation in nuclear medicine imaging through deep learning‐based automated organ segmentation and SUV analysis, significantly enhancing accuracy in predicting breast cancer prognosis.

Result Analysis
Print
Save
E-mail