1.Microbial Diversity and Physicochemical Properties of Rhizosphere Soil of Healthy and Diseased Andrographis paniculata
Yongqin LI ; Sitong ZHOU ; Lele XU ; Liyun WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):172-181
ObjectiveTo analyze the diversity and structural characteristics of microbial communities in the rhizosphere soil of healthy and diseased Andrographis paniculata and to explore the interactions of soil, plants, and microorganisms during the occurrence of diseases. MethodsThe physicochemical properties of the rhizosphere soil of healthy and diseased A.paniculata were determined, and the composition and diversity of bacterial and fungal communities in the rhizosphere soil were analyzed by Illumina high-throughput sequencing. Furthermore, the correlations between physicochemical properties and microorganisms of the rhizosphere soil were explored. ResultsThe content of total nitrogen, total potassium, and available potassium in the rhizosphere soil of diseased A. paniculata was significantly higher than that of healthy A. paniculata. The alpha diversity and richness (operational taxonomic units) of bacterial and fungal communities in the rhizosphere soil of diseased plants decreased compared with those of healthy plants. The microbial communities in the rhizosphere soil of healthy and diseased A. paniculata showed similar composition but different relative abundance. At the phylum level, the relative abundance of Proteobacteria and Chytridiomycota significantly increased, while that of Bacteroidota significantly decreased in the rhizosphere soil of diseased plants. At the genus level, the relative abundance of Sphingomonas, Pseudomonas, and Bryobacter significantly increased, while that of RB41 showed a significant decrease in the rhizosphere soil of diseased plants. The correlation analysis showed different correlations of microbial phyla with physicochemical properties of the rhizosphere soil between healthy and diseased plants. Organic matter, alkaline nitrogen, available phosphorus, and total potassium were correlated with the relative abundance of some dominant bacterial and fungal phyla in the rhizosphere soil of healthy plants, while available nitrogen and total phosphorus were correlated with the relative abundance of some dominant bacterial and fungal phyla in the rhizosphere soil of diseased plants. ConclusionThere are differences in the diversity and richness of microbial communities in the rhizosphere soil of healthy and diseased A. paniculata. The physicochemical properties of soil may have an impact on the rhizosphere microorganisms of A. paniculata, leading to the development of diseases. The results provide a scientific basis for the prevention and ecological management of A. paniculata diseases.
2.Microbial Diversity and Physicochemical Properties of Rhizosphere Soil of Healthy and Diseased Andrographis paniculata
Yongqin LI ; Sitong ZHOU ; Lele XU ; Liyun WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):172-181
ObjectiveTo analyze the diversity and structural characteristics of microbial communities in the rhizosphere soil of healthy and diseased Andrographis paniculata and to explore the interactions of soil, plants, and microorganisms during the occurrence of diseases. MethodsThe physicochemical properties of the rhizosphere soil of healthy and diseased A.paniculata were determined, and the composition and diversity of bacterial and fungal communities in the rhizosphere soil were analyzed by Illumina high-throughput sequencing. Furthermore, the correlations between physicochemical properties and microorganisms of the rhizosphere soil were explored. ResultsThe content of total nitrogen, total potassium, and available potassium in the rhizosphere soil of diseased A. paniculata was significantly higher than that of healthy A. paniculata. The alpha diversity and richness (operational taxonomic units) of bacterial and fungal communities in the rhizosphere soil of diseased plants decreased compared with those of healthy plants. The microbial communities in the rhizosphere soil of healthy and diseased A. paniculata showed similar composition but different relative abundance. At the phylum level, the relative abundance of Proteobacteria and Chytridiomycota significantly increased, while that of Bacteroidota significantly decreased in the rhizosphere soil of diseased plants. At the genus level, the relative abundance of Sphingomonas, Pseudomonas, and Bryobacter significantly increased, while that of RB41 showed a significant decrease in the rhizosphere soil of diseased plants. The correlation analysis showed different correlations of microbial phyla with physicochemical properties of the rhizosphere soil between healthy and diseased plants. Organic matter, alkaline nitrogen, available phosphorus, and total potassium were correlated with the relative abundance of some dominant bacterial and fungal phyla in the rhizosphere soil of healthy plants, while available nitrogen and total phosphorus were correlated with the relative abundance of some dominant bacterial and fungal phyla in the rhizosphere soil of diseased plants. ConclusionThere are differences in the diversity and richness of microbial communities in the rhizosphere soil of healthy and diseased A. paniculata. The physicochemical properties of soil may have an impact on the rhizosphere microorganisms of A. paniculata, leading to the development of diseases. The results provide a scientific basis for the prevention and ecological management of A. paniculata diseases.
3.Yishen Huashi Granules Protect Kidneys of db/db Mice via p38 MAPK Signaling Pathway
Kaidong ZHOU ; Sitong WANG ; Ge JIN ; Yanmo CAI ; Xin ZHOU ; Yunhua LIU ; Xinxue ZHANG ; Min ZHANG ; Zongjiang ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):58-68
ObjectiveTo explore the mechanism of Yishen Huashi granules in alleviating renal tubular epithelial cell injury and relieving diabetic kidney disease by regulating the mitogen-activated protein kinase (MAPK) signaling pathway. MethodsThe db/db mice of 12 weeks old were randomly assigned into model , dapagliflozin (1.6 mg·kg-1), and Yishen Huashi granules (4.7 g·kg-1), and db/m mice were used as the control group. The general conditions of mice were observed, and fasting blood glucose and 24-h urinary protein and albumin-to-creatinine ratio (ACR) were measured at weeks 0 and 12 of administration. After 12 weeks of treatment, the levels of serum creatinine (SCr), blood urea (UREA), triglycerides (TG), total cholesterol (TC), and low density lipoprotein (LDL) were measured. The pathological changes in the renal tissue were observed by hematoxylin-eosin (HE) staining, Periodic acid-Schiff (PAS) staining, Mallory staining, and transmission electron microscopy. Real-time PCR was employed to determine the mRNA levels of monocyte chemotactic protein-1 (MCP-1) and CC chemokine receptor-2 (CCR2) in the renal tissue of mice. The immunohistochemical assay was employed to examine the expression of p38, phospho-p38 (p-p38), MCP-1, and CCR2 in the renal tissue of mice. Western blotting was employed to measure the protein levels of p-p38, p38, MCP-1, and CCR2 in the renal tissue of mice.HK-2 cells cultured in vitro were grouped as follows: negative control, high glucose(30 mmol·L-1), Yishen Huashi granule-containing serum, and SB203580. After 48 h of cell culture in each group, RNA were extracted and the levels of MCP-1, and CCR2 mRNA were determined by Real-time PCR,proteins were extracted and the levels of p38, p-p38, MCP-1, and CCR2 were determined by Western blot. ResultsThe in vivo experiments showed that before treatment, other groups had higher body weight, blood glucose level, 24 h urinary protein, and ACR than the control group (P<0.05,P<0.01). After 12 weeks of treatment, compared with the model group, the Yishen Huashi granules group showed improved general conditions, a decreasing trend in body weight, lowered levels of blood glucose, 24-h urinary protein, and ACR (P<0.01), reduced SCr and UREA (P<0.01), and declined levels of TC, TG, and LDL (P<0.05,P<0.01). Compared with the model group, the Yishen Huashi granules group showed alleviated damage and interstitial fibrosis in the renal tissue as well as reductions in glomerular foot process fusion and basement membrane thickening. Moreover, the Yishen Huashi granules group showed down-regulated mRNA levels of MCP-1 and CCR2 (P<0.01), reduced positive expression of p-p38, MCP-1, and CCR2 (P<0.01), and down-regulated protein levels of p-p38/p38, MCP-1, and CCR2 (P<0.05) in the renal tissue. The cell experiment showed that compared with the high glucose group, the Yishen Huashi granule-containing serum group showcased down-regulated mRNA levels of MCP-1 and CCR2 (P<0.01) and down-regulated protein levels of p-p38/p38, MCP-1, and CCR2(P<0.05,P<0.01). ConclusionYishen Huashi granules can regulate glucose-lipid metabolism, reduce 24 h urinary protein and ACR, improve the renal function, alleviate the renal tubule injury caused by high glucose, and protect renal tubule epithelial cells in db/db mice by reducing MCP-1/CCR2 activation via the p38 MAPK signaling pathway.
4.In Vitro and in vivo Component Identification of Danshenyin Based on UPLC-Q-TOF-MS/MS
Sitong ZHANG ; Xianrun HU ; Wenkang LIU ; Jinchun LEI ; Xuemei CHENG ; Xiaojun WU ; Wansheng CHEN ; Manlin LI ; Changhong WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):175-183
ObjectiveTo elucidate the chemical composition of Danshenyin and its blood components in rats after oral administration. MethodsUltra performance liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS/MS) coupled with PeakView 1.2 software was used to systematically characterize and identify the components of Danshenyin aqueous extract and its migratory components in rat blood after oral administration based on the retention time, quasi-molecular ion peaks, secondary fragmentation ions, and literature reports, and a preliminary compounds identification of Salviae Miltiorrhizae Radix et Rhizoma aqueous extract, the co-decoction of Santali Albi Lignum and Amomi Fructus was carried out to attribute the chemical constituents of the aqueous extract of Danshenyin. ResultsA total of 73 compounds, including 21 phenolic acids, 23 diterpenes, 6 flavonoids, 7 organic acids, 3 volatile oils and 13 others, were identified from the aqueous extract of Danshenyin. And 36 prototypes and 15 metabolites were identified in rat plasma, the major metabolic pathways included reduction, hydration, hydroxylation, demethylation, methylation, sulfation and others, these metabolites were mainly derived from tanshinones and salvianolic acids. ConclusionThe main blood components of the aqueous extract of Danshenyin are salvianolic acids and tanshinones, which may be the material basis of the efficacy. This study can provide reference for pharmacological research, quality control, and clinical application of Danshenyin.
5.Effect of Shenkang Injection on Podocyte Apoptosis and GRP78/CHOP Signaling Pathway in db/db Mice with Diabetic Kidney Disease Based on Endoplasmic Reticulum Stress
Yanmo CAI ; Sitong WANG ; Xin ZHOU ; Ge JIN ; Kaidong ZHOU ; Yunhua LIU ; Fengfeng ZHANG ; Xinxue ZHANG ; Zongjiang ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):81-90
ObjectiveTo investigate the mechanism of Shenkang injection in delaying diabetic kidney disease by regulating endoplasmic reticulum stress and attenuating podocyte apoptosis through the Glucose regulated protein 78 ( GRP78 ) / transcription factor C / EBP homologous protein ( CHOP ) signaling pathway (GRP78/CHOP) signaling pathway. MethodsFor the animal experiment, 10 12-week-old db/m mice were selected as a normal group, and 30 12-week-old db/db mice were randomly divided into a model group, a Shenkang injection group (15.6 mL·kg-1), and a dapagliflozin group (1.6 mg·kg-1). To observe the general condition of mice, fasting blood glucose, urinary albumin/urine creatinine (ACR), and 24 h urine protein quantification were detected in each group before drug administration. After 12 weeks of drug treatment, mice were tested for fasting blood glucose, total cholesterol (TC), triglyceride (TG), low-density cholesterol (LDL), ACR, 24 h urine protein quantification, blood creatinine (SCr), and blood urea (UREA). Hematoxylin-eosin (HE) staining, periodic acid-Schiff (PAS) staining, and transmission electron microscopy were used to observe the pathologic morphology in renal tissue. Immunohistochemistry was used to detect the expressions of nephroprotective marker protein (Nephrin), glucose-regulated protein 78 (GRP78), CCAAT/enhancer-binding protein homologous protein (CHOP), B-cell lymphoma-2 (Bcl-2), and Bcl-2-associated X protein (Bax) in renal tissue. Western blot was used to detect the expressions of GRP78, CHOP, Bcl-2, Bax, and Nephrin proteins, and Real-time polymerase chain reaction (Real-time PCR) was employed to detect the expressions of Nephrin, GRP78, CHOP, Bcl-2, and Bax mRNAs in renal tissue. ResultsBefore drug administration, compared with those in the normal group, the body mass of db/db mice was significantly increased, and blood glucose, 24 h urine protein quantification, and ACR were significantly elevated in the Shenkang injection group and Dapagliflozin group (P<0.01). After 12 weeks of administration, compared with those in the model group, the general state of mice in the Shenkang injection group was significantly improved, and the body mass was decreased. The blood glucose was significantly reduced (P<0.01), and blood lipids TC, TG, and LDL were significantly decreased (P<0.05, P<0.01). The 24 h urine protein quantification and ACR were significantly decreased (P<0.05), and SCr and UREA were significantly reduced (P<0.01). Compared with those of the model group, the pathologic results of the Shenkang injection group showed that proliferation of mesangial cells, reduction of inflammatory cell infiltration, and alleviation of renal tubular vacuolization and podocyte damage were observed in renal tissue of mice. Electron microscopy showed that fusion of the pedicle protruding and thickening of the basement membrane were reduced. Immunohistochemistry results showed that the expressions of GRP78, CHOP, and Bax proteins were significantly reduced (P<0.01), and the expressions of Nephrin and Bcl-2 proteins were significantly increased (P<0.01) in renal tissue of the Shenkang injection group. Western blot results showed that the expressions of Nephrin and Bcl-2 in the Shenkang injection group were significantly increased (P<0.05, P<0.01), and the expressions of GRP78, CHOP, and Bax proteins were significantly decreased (P<0.05, P<0.01). Real-time PCR results showed that the expressions of GRP78, CHOP, and Bax mRNAs were down regulated in the Shenkang injection group (P<0.01), and the expressions of Nephrin and Bcl-2 mRNAs were up regulated (P<0.01). ConclusionShenkang injection inhibits endoplasmic reticulum stress response and podocyte apoptosis by regulating the GRP78/CHOP signaling pathway, which in turn ensures the integrity of glomerular filtration barrier, reduces the occurrence of proteinuria, improves renal function, and thus delays the progression of diabetic kidney disease.
6.Effect of Shenkang Injection on Podocyte Apoptosis and GRP78/CHOP Signaling Pathway in db/db Mice with Diabetic Kidney Disease Based on Endoplasmic Reticulum Stress
Yanmo CAI ; Sitong WANG ; Xin ZHOU ; Ge JIN ; Kaidong ZHOU ; Yunhua LIU ; Fengfeng ZHANG ; Xinxue ZHANG ; Zongjiang ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):81-90
ObjectiveTo investigate the mechanism of Shenkang injection in delaying diabetic kidney disease by regulating endoplasmic reticulum stress and attenuating podocyte apoptosis through the Glucose regulated protein 78 ( GRP78 ) / transcription factor C / EBP homologous protein ( CHOP ) signaling pathway (GRP78/CHOP) signaling pathway. MethodsFor the animal experiment, 10 12-week-old db/m mice were selected as a normal group, and 30 12-week-old db/db mice were randomly divided into a model group, a Shenkang injection group (15.6 mL·kg-1), and a dapagliflozin group (1.6 mg·kg-1). To observe the general condition of mice, fasting blood glucose, urinary albumin/urine creatinine (ACR), and 24 h urine protein quantification were detected in each group before drug administration. After 12 weeks of drug treatment, mice were tested for fasting blood glucose, total cholesterol (TC), triglyceride (TG), low-density cholesterol (LDL), ACR, 24 h urine protein quantification, blood creatinine (SCr), and blood urea (UREA). Hematoxylin-eosin (HE) staining, periodic acid-Schiff (PAS) staining, and transmission electron microscopy were used to observe the pathologic morphology in renal tissue. Immunohistochemistry was used to detect the expressions of nephroprotective marker protein (Nephrin), glucose-regulated protein 78 (GRP78), CCAAT/enhancer-binding protein homologous protein (CHOP), B-cell lymphoma-2 (Bcl-2), and Bcl-2-associated X protein (Bax) in renal tissue. Western blot was used to detect the expressions of GRP78, CHOP, Bcl-2, Bax, and Nephrin proteins, and Real-time polymerase chain reaction (Real-time PCR) was employed to detect the expressions of Nephrin, GRP78, CHOP, Bcl-2, and Bax mRNAs in renal tissue. ResultsBefore drug administration, compared with those in the normal group, the body mass of db/db mice was significantly increased, and blood glucose, 24 h urine protein quantification, and ACR were significantly elevated in the Shenkang injection group and Dapagliflozin group (P<0.01). After 12 weeks of administration, compared with those in the model group, the general state of mice in the Shenkang injection group was significantly improved, and the body mass was decreased. The blood glucose was significantly reduced (P<0.01), and blood lipids TC, TG, and LDL were significantly decreased (P<0.05, P<0.01). The 24 h urine protein quantification and ACR were significantly decreased (P<0.05), and SCr and UREA were significantly reduced (P<0.01). Compared with those of the model group, the pathologic results of the Shenkang injection group showed that proliferation of mesangial cells, reduction of inflammatory cell infiltration, and alleviation of renal tubular vacuolization and podocyte damage were observed in renal tissue of mice. Electron microscopy showed that fusion of the pedicle protruding and thickening of the basement membrane were reduced. Immunohistochemistry results showed that the expressions of GRP78, CHOP, and Bax proteins were significantly reduced (P<0.01), and the expressions of Nephrin and Bcl-2 proteins were significantly increased (P<0.01) in renal tissue of the Shenkang injection group. Western blot results showed that the expressions of Nephrin and Bcl-2 in the Shenkang injection group were significantly increased (P<0.05, P<0.01), and the expressions of GRP78, CHOP, and Bax proteins were significantly decreased (P<0.05, P<0.01). Real-time PCR results showed that the expressions of GRP78, CHOP, and Bax mRNAs were down regulated in the Shenkang injection group (P<0.01), and the expressions of Nephrin and Bcl-2 mRNAs were up regulated (P<0.01). ConclusionShenkang injection inhibits endoplasmic reticulum stress response and podocyte apoptosis by regulating the GRP78/CHOP signaling pathway, which in turn ensures the integrity of glomerular filtration barrier, reduces the occurrence of proteinuria, improves renal function, and thus delays the progression of diabetic kidney disease.
7.Effects of point-moxibustion with Zhuang medicinal thread on pain sensitization and FcεRI pathway in rats with postherpetic neuralgia.
Sitong XIAN ; Chenglong WANG ; Caiyue LIN ; Guangtian HUANG ; Lingyao ZHOU ; Xiaoting FAN ; Chen LIN
Chinese Acupuncture & Moxibustion 2025;45(6):801-807
OBJECTIVE:
To observe the effects of point-moxibustion with Zhuang medicinal thread on differentially expressed genes (DEGs) in the dorsal root ganglion (DRG), tissue morphology, and the expression of Fc epsilon RI (FcεRI) pathway proteins spleen tyrosine kinase (Syk) and membrane spanning 4-domain A2 (MS4A2) in rat model of postherpetic neuralgia (PHN), and to explore the potential mechanism by which this therapy alleviates pain sensitization.
METHODS:
Thirty-nine male Sprague-Dawley (SD) rats were randomly divided into a control group, a model group, and a moxibustion group, with 13 rats in each group. The PHN model was established in the model and moxibustion groups by intraperitoneal injection of resiniferatoxin. In the moxibustion group, bilateral L4-L6 "Jiaji" (EX-B2) points were treated with point-moxibustion with Zhuang medicinal thread from day 7 post-modeling, with two cones per acupoint per session, every other day for a total of 10 sessions. Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured at 1 day before modeling and on days 1, 4, 7, 13, 19, and 25 after modeling. After intervention, HE staining was used to observe DRG morphology. RNA sequencing was performed to analyze DEGs in DRG and conduct bioinformatics analysis. The expression of Syk and MS4A2 mRNA and proteins in the FcεRI pathway in DRG was detected by quantitative PCR and Western blot.
RESULTS:
Compared with the control group, the model group exhibited decreased MWT (P<0.05) and increased TWL (P<0.05); histopathological analysis revealed neuronal atrophy, nuclear displacement, and intracellular vacuoles, with a slightly loose arrangement; the RNA-Seq identified 3,207 DEGs (1,997 upregulated and 1,210 downregulated); the mRNA and protein expression levels of Syk and MS4A2 were significantly increased (P<0.01). Compared with the model group, the moxibustion group showed increased MWT (P<0.05) and decreased TWL (P<0.05), with relatively normal neuronal morphology; the RNA-Seq identified 426 DEGs (250 upregulated and 176 downregulated); the mRNA and protein expression levels of Syk and MS4A2 were significantly decreased (P<0.05). Venn diagram analysis identified 156 DEGs that showed a reversal in expression trends after treatment, including Syk and MS4A2, which are associated with pain sensitization. KEGG pathway analysis indicated that these DEGs were primarily enriched in the FcεRI pathway.
CONCLUSION
Point-moxibustion with Zhuang medicinal thread could alleviate pain sensitization in PHN rats, possibly by inhibiting the FcεRI signaling pathway and downregulating the expression of Syk and MS4A2.
Animals
;
Rats, Sprague-Dawley
;
Male
;
Rats
;
Moxibustion
;
Neuralgia, Postherpetic/physiopathology*
;
Syk Kinase/metabolism*
;
Acupuncture Points
;
Humans
;
Ganglia, Spinal/metabolism*
;
Signal Transduction
8.Nasolabial groove through the skin flap repair nasal vestibular benign and malignant lesions Application of postoperative tissue defects.
Tongtong GUO ; Sitong GE ; Sijiao SHAN ; Meishan LIU ; Fuyu WANG ; Xian JIANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(3):265-271
Objective:To investigate the application value of nasolabial flaps in addressing tissue defects after resection of benign and malignant nasal vestibular lesions. Methods:The clinical data of patients with benign and malignant nasal vestibular lesions were analyzed retrospectively. There were 4 cases of squamous cell carcinoma, 2 cases of black hairy nevus and 1 case of chronic proliferative inflammatory lesions, all of which were repaired by adjacent nasolabial flap. Results:After 6 months of follow-up, none of the patients developed nasal vestibular contracture or nostril stenosis, and postoperative nasal ventilation function was good. Conclusion:The preoperative design of individual nasolabial flaps is very important for maintaining maxillofacial aesthetics, protectingthe nasolabial framework, and preserving postoperative nasal ventilation function.
Humans
;
Retrospective Studies
;
Middle Aged
;
Nose Neoplasms/surgery*
;
Surgical Flaps
;
Male
;
Female
;
Adult
;
Nose/surgery*
;
Plastic Surgery Procedures/methods*
;
Carcinoma, Squamous Cell/surgery*
;
Aged
;
Skin Transplantation
9.Exploration and practice of the training model for applied talents in Traditional Chinese Medicine based on the"Four Combinations"
Yan ZHANG ; Sitong LU ; Jie WANG ; Dayu SUN ; Hui JIA ; Yao LU ; Na SHI
Journal of Shenyang Medical College 2024;26(4):436-439
Objective:To explore the practical effect of applied talent training model based on the"Four Combinations"among students majoring in Traditional Chinese Medicine in a Medical College.Methods:The undergraduate students majoring in Traditional Chinese Medicine at a medical college from grade 2021 and 2022 were selected as the research subjects and divided into two groups.Experimental group were students who had participated in various extracurricular competitions and innovation and entrepreneurship projects,while control group were students who had not participated in any competitions or projects.The final intellectual education scores of the two groups of students were compared(excluding the scores of Marxist basic principles).A questionnaire survey was conducted on the satisfaction of talent cultivation models among the above undergraduate students,and the validity and satisfaction analysis of the survey results were conducted.Results:The experimental group had significantly higher intellectual education scores than the control group(P<0.05).The results of factor analysis indicated that the sample suitability and the questionnaire validity seem plausible(KMO=0.874).The overall satisfaction score of students towards the"Four Combinations"talent cultivation model was 4.16±0.2(out of 5),reflecting their high recognition of the model.Conclusion:The construction of a"Four Combinations"characteristic Traditional Chinese Medicine applied talent cultivation model is beneficial for improving the quality of cultivating high-quality and composite applied talents in Traditional Chinese Medicine,so as to provide high-quality applied talents with solid theoretical foundation and practical innovation capabilities for the Liaoshen region.
10.Research progress on drug resistance mechanism and treatment of drug-resistant tuberculosis
Shanshan ZHONG ; Yu PENG ; Rongrong MAO ; Fang WANG ; Sitong FAN ; Jiajia CHEN
China Pharmacist 2024;28(10):341-349
Tuberculosis is caused by Mycobacterium tuberculosis,and the problem of its drug resistance has become increasingly prominent in recent years,attracting widespread attention globally.Currently,the situation of drug-resistant tuberculosis is grim,and effective strategies are urgently needed to deal with it.Understanding the drug resistance mechanism and treatment status of drug-resistant tuberculosis can provide an important basis for clinical prevention and treatment of drug-resistant tuberculosis.This paper reviews the progress of drug resistance mechanism and treatment of drug-resistant tuberculosis,in order to provide a reference for clinical intervention.

Result Analysis
Print
Save
E-mail