1.Sodium butyrate activates HMGCS2 to promote ketone body production through SIRT5-mediated desuccinylation.
Yanhong XU ; Xiaotong YE ; Yang ZHOU ; Xinyu CAO ; Shiqiao PENG ; Yue PENG ; Xiaoying ZHANG ; Yili SUN ; Haowen JIANG ; Wenying HUANG ; Hongkai LIAN ; Jiajun YANG ; Jia LI ; Jianping YE
Frontiers of Medicine 2023;17(2):339-351
Ketone bodies have beneficial metabolic activities, and the induction of plasma ketone bodies is a health promotion strategy. Dietary supplementation of sodium butyrate (SB) is an effective approach in the induction of plasma ketone bodies. However, the cellular and molecular mechanisms are unknown. In this study, SB was found to enhance the catalytic activity of 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), a rate-limiting enzyme in ketogenesis, to promote ketone body production in hepatocytes. SB administrated by gavage or intraperitoneal injection significantly induced blood ß-hydroxybutyrate (BHB) in mice. BHB production was induced in the primary hepatocytes by SB. Protein succinylation was altered by SB in the liver tissues with down-regulation in 58 proteins and up-regulation in 26 proteins in the proteomics analysis. However, the alteration was mostly observed in mitochondrial proteins with 41% down- and 65% up-regulation, respectively. Succinylation status of HMGCS2 protein was altered by a reduction at two sites (K221 and K358) without a change in the protein level. The SB effect was significantly reduced by a SIRT5 inhibitor and in Sirt5-KO mice. The data suggests that SB activated HMGCS2 through SIRT5-mediated desuccinylation for ketone body production by the liver. The effect was not associated with an elevation in NAD+/NADH ratio according to our metabolomics analysis. The data provide a novel molecular mechanism for SB activity in the induction of ketone body production.
Mice
;
Animals
;
Butyric Acid/metabolism*
;
Ketone Bodies/metabolism*
;
Liver/metabolism*
;
Hydroxybutyrates/metabolism*
;
Down-Regulation
;
Sirtuins/metabolism*
;
Hydroxymethylglutaryl-CoA Synthase/metabolism*
2.Role of SIRTs in cerebral ischemia reperfusion injury and targeted intervention of Chinese medicine.
Guang-Shan HUANG ; Xuan WEI ; Kai YANG ; Ji-Yong LIU ; Jin-Wen GE ; Zhi-Gang MEI
China Journal of Chinese Materia Medica 2022;47(20):5406-5417
Cerebral ischemia-reperfusion injury(CIRI) is a complex cascade process and seriously hinders the recovery of patients with acute ischemic stroke, which has become an urgent public health issue to be addressed. Silent information regulators(SIRTs) are a family of nicotinamide adenine dinucleotide(NAD~+)-dependent deacetylases, capable of deacylating the histone and non-histone lysine groups. Accumulating evidence has demonstrated that SIRTs are able to regulate the pathological processes such as oxidative stress, inflammatory response, mitochondrial dysfunction, and programmed cell death of CIRI through post-translational deacetylation, and exert the neuroprotection function. In this study, we reviewed the papers about the role and regulatory mechanisms of SIRTs in the pathological process of CIRI published in the past decade. Further, we summarized the research advance in the prevention and treatment of CIRI with Chinese medicine targeting SIRTs and the related signaling pathways. This review will provide new targets and theoretical support for the clinical application of Chinese medicine in treating CIRI during the occurrence of ischemic stroke.
Humans
;
Brain Ischemia/therapy*
;
Ischemic Stroke/therapy*
;
Medicine, Chinese Traditional
;
Oxidative Stress
;
Reperfusion Injury/therapy*
;
Sirtuins/metabolism*
3.Acute cerebral ischemia-induced down-regulation of Sirt3 protein expression contributes to neuronal injury via damaging mitochondrial function.
Jia-Hui FAN ; Hui-Meng SONG ; Xia ZHANG ; Wei-Jie YAN ; Song HAN ; Yan-Ling YIN
Acta Physiologica Sinica 2021;73(1):17-25
This study was aimed to determine the effect of acute cerebral ischemia on the protein expression level of silent mating type information regulator 2 homolog 3 (Sirt3) in the neurons and clarify the pathological role of Sirt3 in acute cerebral ischemia. The mice with middle cerebral artery occlusion (MCAO) and primary cultured rat hippocampal neurons with oxygen glucose deprivation (OGD) were used as acute cerebral ischemia models in vivo and in vitro, respectively. Sirt3 overexpression was induced in rat hippocampal neurons by lentivirus transfection. Western blot was utilized to measure the changes in Sirt3 protein expression level. CCK8 assay was used to detect cell viability. Immunofluorescent staining was used to detect mitochondrial function. Transmission electron microscope was used to detect mitochondrial autophagy. The results showed that, compared with the normoxia group, hippocampal neurons from OGD1 h/reoxygenation 2 h (R2 h) and OGD1 h/R12 h groups exhibited down-regulated Sirt3 protein expression levels. Compared with contralateral normal brain tissue, the ipsilateral penumbra region from MCAO1 h/reperfusion 24 h (R24 h) and MCAO1 h/R72 h groups exhibited down-regulated Sirt3 protein expression levels, while there was no significant difference between the Sirt3 protein levels on both sides of sham group. OGD1 h/R12 h treatment damaged mitochondrial function, activated mitochondrial autophagy and reduced cell viability in hippocampal neurons, whereas Sirt3 over-expression attenuated the above damage effects of OGD1 h/R12 h treatment. These results suggest that acute cerebral ischemia results in a decrease in Sirt3 protein level. Sirt3 overexpression can alleviate acute cerebral ischemia-induced neural injuries by improving the mitochondrial function. The current study sheds light on a novel strategy against neural injuries caused by acute cerebral ischemia.
Animals
;
Brain Ischemia
;
Down-Regulation
;
Infarction, Middle Cerebral Artery
;
Mice
;
Mitochondria
;
Neurons/metabolism*
;
Rats
;
Reperfusion Injury
;
Sirtuin 3/metabolism*
;
Sirtuins
4.The role of SIRT6 in nonalcoholic steatohepatitis.
Xian-Dan JING ; Qin TANG ; Jin-Han HE
Acta Physiologica Sinica 2021;73(5):745-754
SIRT6, a member of the silencing information regulatory protein family, is a nicotinamide adenine dinucleotide-dependent histone deacetylase and an ADP-ribose transferase enzyme. It plays an important role in fundamental physiological and pathological processes, including lipid metabolism, inflammation, oxidative stress and fibrosis, and is considered as a potential therapeutic target for metabolic syndrome. SIRT6 knockout mice displayed severe fatty liver, and the expression of SIRT6 in the liver of nonalcoholic steatohepatitis (NASH) mice was significantly lower than that of normal mice. Overexpression of SIRT6 significantly ameliorated NASH-induced liver damage. It is suggested that SIRT6 may play a key role in protecting against NASH. In this paper, we review the important regulatory functions of SIRT6 in the occurrence and development of NASH.
Animals
;
Liver
;
Mice
;
Mice, Inbred C57BL
;
Mice, Knockout
;
Non-alcoholic Fatty Liver Disease/metabolism*
;
Oxidative Stress
;
Sirtuins/metabolism*
6.Effects of saikosaponin b_2 on inflammation and energy metabolism in mice with acute liver injury induced by LPS/GalN.
Man YOU ; Rui-Fang LI ; Zi-Han GAO ; Yuan-Ye LI ; Wei-Yi LIU ; Jian-Gang WANG ; Hong-Wei WANG ; San-Qiang LI
China Journal of Chinese Materia Medica 2019;44(14):2966-2971
To study the effects of saikosaponin b2( SS-b2) on inflammatory factors and energy metabolism against lipopolysaccharide/galactosamine( LPS/Gal N) induced acute liver injury in mice. Mice were randomly divided into normal group( equal amount of normal saline),model group( 100 g·kg~(-1) LPS and 400 mg·kg~(-1) Gal N),low,medium,high dose group of SS-b2( SS-b25,10,20 mg·kg~(-1)·d-1) and positive control group( dexamethasone,10 mg·kg~(-1)). All of the groups except for the normal group were treated with LPS/Gal N though intraperitoneally injection to establish the acute liver injury model. The organ indexes were calculated. The levels of serum transaminases( ALT and AST) and the activities of ATPase( Na+-K+-ATPase,Ca2+-Mg2+-ATPase) in liver were detected. The activity of tumor necrosis factor-α( TNF-α),interleukin-1β( IL-1β) and interleukin-6( IL-6) were determined by the enzyme-linked immunosorbent assay( ELISA). The contents of lactate dehydrogenase( LDH) in liver were determined by micro-enzyme method. HE staining was used to observe the histopathological changes of the liver. Histochemical method was used to investigate the protein expression of liver lactate dehydrogenase-A( LDH-A). The protein expressions of Sirt-6 and NF-κB in the liver were detected by Western blot. According to the results,compared with the model group,there were significant changes in organ indexes in the high-dose group of SS-b2( P<0. 05). The level of ALT,AST,TNF-α,IL-1β,IL-6 and the activities of LDH in serum of mice with liver injury were significantly reduced in the medium and high dose groups of SS-b2( P<0. 01). With the increase of the concentration of SS-b2,the range of hepatic lesions and the damage in mice decreased. The activities of Na+-K+-ATPase and Ca2+-Mg2+-ATPase in liver of mice were significantly enhanced in each dose group( P<0. 01). The expression of NF-κB in liver tissues was significantly down-regulated in the medium and high dose group( P<0. 01). Meanwhile,the expression of Sirt-6 protein in the liver of mice with acute liver injury was significantly increased in each dose group( P<0. 01).In summary,SS-b2 has a significant protective effect on LPS/Gal N-induced acute liver injury in mice,which may be related to the down-regulation of NF-κB protein expression and up-regulation of Sirt-6 protein expression to improve inflammatory injury and energy metabolism.
Animals
;
Chemical and Drug Induced Liver Injury
;
drug therapy
;
Cytokines
;
metabolism
;
Energy Metabolism
;
Galactosamine
;
Inflammation
;
drug therapy
;
Lipopolysaccharides
;
Liver
;
drug effects
;
Mice
;
NF-kappa B
;
metabolism
;
Oleanolic Acid
;
analogs & derivatives
;
pharmacology
;
Random Allocation
;
Saponins
;
pharmacology
;
Sirtuins
;
metabolism
7.Progress in roles and mechanisms of deacetylase SIRT7.
Lin LI ; Zhen DONG ; Jie YANG ; Qian LI ; Qian LEI ; Jingxin MAO ; Liqun YANG ; Hongjuan CUI
Chinese Journal of Biotechnology 2019;35(1):13-26
As a member of the Sirtuins family in mammals, SIRT7 locates in nucleus and is a highly specific H3K18Ac (acetylated lysine 18 of histone H3) deacetylase. Recent studies showed that SIRT7 could participate in the ribosomal RNA transcription, cell metabolism, cell stress and DNA damage repair through various signaling pathways. In addition, SIRT7 is also closely related with aging, heart disease and fatty liver. In particular, SIRT7 plays important roles in the regulation of initiation and development of various tumors, such as liver cancer, gastric cancer, breast cancer, bladder cancer, colorectal cancer, and head/neck squamous cell carcinoma. This review describes the cellular and molecular functions of SIRT7, and systematically summarizes recent progress of SIRT7 in human disease.
Animals
;
Histones
;
Humans
;
Lysine
;
Neoplasms
;
Signal Transduction
;
Sirtuins
;
metabolism
8.Function of SIRT6 in tumor initiation and progression.
Zhen DONG ; Qian LEI ; Lichao LIU ; Hongjuan CUI
Chinese Journal of Biotechnology 2016;32(7):870-879
As a member of the sirtuins family, also called Class III histone deacetylases (HDACs), SIRT6 has many catalytic enzyme activities and plays a pivotal role in biological processes including anti-aging, chromatin regulation, transcriptional control, glucose and lipid metabolism, and DNA damage repair. Recently, increasing evidences indicated that SIRT6 was related to initiation and development of tumors, such as hepatic cancer, lung cancer, breast cancer and genital system tumors. However, SIRT6 might play a dual role in tumorigenesis and progression. SIRT6 often acted as a tumor suppressor, but might play an oncogenic role. Based on our current study, we depicted the essential roles of SIRT6 in the initiation and progression of various tumors, and summarized its mode of actions, which might provide clues for cancer therapy.
Carcinogenesis
;
Gene Expression Regulation, Neoplastic
;
Genes, Tumor Suppressor
;
Humans
;
Neoplasms
;
genetics
;
pathology
;
Oncogenes
;
Sirtuins
;
genetics
;
metabolism
9.Autophagy induction by SIRT6 is involved in oxidative stress-induced neuronal damage.
Jiaxiang SHAO ; Xiao YANG ; Tengyuan LIU ; Tingting ZHANG ; Qian Reuben XIE ; Weiliang XIA
Protein & Cell 2016;7(4):281-290
SIRT6 is a NAD(+)-dependent histone deacetylase and has been implicated in the regulation of genomic stability, DNA repair, metabolic homeostasis and several diseases. The effect of SIRT6 in cerebral ischemia and oxygen/glucose deprivation (OGD) has been reported, however the role of SIRT6 in oxidative stress damage remains unclear. Here we used SH-SY5Y neuronal cells and found that overexpression of SIRT6 led to decreased cell viability and increased necrotic cell death and reactive oxygen species (ROS) production under oxidative stress. Mechanistic study revealed that SIRT6 induced autophagy via attenuation of AKT signaling and treatment with autophagy inhibitor 3-MA or knockdown of autophagy-related protein Atg5 rescued H2O2-induced neuronal injury. Conversely, SIRT6 inhibition suppressed autophagy and reduced oxidative stress-induced neuronal damage. These results suggest that SIRT6 might be a potential therapeutic target for neuroprotection.
Adenine
;
analogs & derivatives
;
toxicity
;
Autophagy
;
drug effects
;
Autophagy-Related Protein 5
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Blotting, Western
;
Cell Line, Tumor
;
Humans
;
Hydrogen Peroxide
;
toxicity
;
Microtubule-Associated Proteins
;
metabolism
;
Oxidative Stress
;
drug effects
;
Proto-Oncogene Proteins c-akt
;
metabolism
;
RNA Interference
;
RNA, Messenger
;
metabolism
;
RNA, Small Interfering
;
metabolism
;
Reactive Oxygen Species
;
metabolism
;
Real-Time Polymerase Chain Reaction
;
Signal Transduction
;
drug effects
;
Sirtuins
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Transfection
10.Sirtuins Function as the Modulators in Aging-related Diseases in Common or Respectively.
Chinese Medical Journal 2015;128(12):1671-1678
Aging
;
genetics
;
metabolism
;
Animals
;
Diabetes Mellitus
;
enzymology
;
metabolism
;
Humans
;
Longevity
;
genetics
;
physiology
;
Neoplasms
;
enzymology
;
metabolism
;
Neurodegenerative Diseases
;
enzymology
;
metabolism
;
Obesity
;
enzymology
;
metabolism
;
Sirtuins
;
genetics
;
metabolism

Result Analysis
Print
Save
E-mail