1.Mechanism of IGF2BP2 regulation of PPAR-γ/GLUT4 pathway in insulin resistance induced by sodium arsenite exposure in HepG2 cells
Shiqing XU ; Zhida HU ; Qiyao ZHANG ; Siqi ZHAO ; Yujie WANG ; Xiaohui WANG ; Teng MA ; Li WANG
Journal of Environmental and Occupational Medicine 2025;42(4):400-407
Background Arsenic is an environmentally harmful substance that causes hepatic insulin resistance and liver damage, increasing the risk of type 2 diabetes mellitus. Objective To explore whether the insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) is involved in insulin resistance in HepG2 cells after arsenic exposure through the peroxisome-proliferator-activated receptor γ (PPAR-γ) / glucose transporter 4 (GLUT4) pathway. Methods Cell viability was determined using cell counting kit 8 (CCK8) and an appropriate NaAsO2 infection dose was determined. A cellular arsenic exposure model of HepG2 cells was established by four concentrations of NaAsO2 solution for 24 h (the experiment was divided into four groups: 0, 2, 4, and 8 μmol·L−1); HepG2 cells were firstly treated with pcDNA3.1-IGF2BP2 and pcDNA3.1-NC respectively for 6 h, then with 8 μmol·L−1 NaAsO2 for 24 h to establish a IGF2BP2 overexpression cell model (the experiment was divided into 4 groups: control, NaAsO2, NaAsO2+pcDNA3.1-IGF2BP2, and NaAsO2+pcDNA3.1-NC); finally the cells were subject to 100 nmol·L−1 insulin stimulation for 30 min. Glycogen and glucose in HepG2 cells were determined by glycogen and glucose assay kits; mRNA expression levels of IGF2BP2 were measured by quantitative real-time PCR; protein expression levels of IGF2BP2, PPAR-γ, and GLUT4 in HepG2 were detected by Western blot (WB); and the binding of IGF2BP2 to PPAR-γ and PPAR-γ to GLUT4 was verified by co-immunoprecipitation (CO-IP) experiment. Results The results of CCK8 experiment showed a dose-effect relationship between NaAsO2 concentration and cell viability. When the concentration of NaAsO2 was ≥4 μmol·L−1 , the cell viabilities were lower than that of the control group (P <0.05). With the increasing dose of NaAsO2 infection, reduced glucose consumption and glycogen levels in HepG2 cells were found in the 2, 4, and 8 μmol·L−1 NaAsO2 treatment groups compared to the control group (P <0.05). The difference between the mRNA expression level of IGF2BP2 in the HepG2 cells treated with 4 or 8 μmol L−1 NaAsO2 and the control group was significant (P <0.05). In the IGF2BP2 overexpression cell model, compared with the control group, glucose consumption and glycogen levels were lowered in the NaAsO2 group (P <0.05), the mRNA expression level of IGF2BP2 and the protein expression levels of IGF2BP2, PPAR-γ, and GLUT4 in the cell membrane were all decreased (P <0.05). Compared with the NaAsO2 group, the glucose consumption and glycogen levels were increased in the NaAsO2+pcDNA3.1-IGF2BP2 group (P <0.05), and the mRNA expression level of IGF2BP2 and the protein expression levels of IGF2BP2, PPAR-γ, and GLUT4 in the cell membrane were all increased (P <0.05). The results of CO-IP experiments showed that IGF2BP2 interacted with PPAR-γ as well as PPAR-γ with GLUT4 protein. Conclusion IGF2BP2 is involved in arsenic exposure-induced insulin resistance in HepG2 cells by acting on the PPAR-γ/GLUT4 pathway.
2.Effects of long non-coding RNA KIAA0125 on proliferation and apoptosis of acute myeloid leukemia U937 cells
Huali HU ; Fahua DENG ; Yuancheng LIU ; Siqi WANG ; Jingxin ZHANG ; Tingting LU ; Hai HUANG ; Sixi WEI
Chinese Journal of Tissue Engineering Research 2025;29(19):3983-3991
BACKGROUND:U937 cells can be used as a cell model for studying the biological characteristics,signaling pathways,and therapeutic targets of acute myeloid leukemia.Although it has been reported that long non-coding RNA KIAA0125 is highly expressed in acute myeloid leukemia,its biological function in U937 cells remains unclear,and its mechanism of action in the occurrence and development of acute myeloid leukemia needs to be further clarified. OBJECTIVE:To investigate the expression level of long non-coding RNA KIAA0125 in peripheral blood of patients with acute myeloid leukemia and its effect on the proliferation and apoptosis of U937 cells. METHODS:RNA-sequencing was used to analyze the bone marrow monocyte samples from acute myeloid leukemia patients,and the differentially expressed gene long non-coding RNA KIAA0125 was screened.The expression of long non-coding RNA KIAA0125 in peripheral blood of patients with acute myeloid leukemia was detected by qRT-PCR.The relationship between long non-coding RNA KIAA0125 mRNA expression and prognosis in bone marrow cells of 173 acute myeloid leukemia patients and 70 healthy people was statistically analyzed by GEPIA database.Subsequently,recombinant lentivirus technology and CRISPR/Cas9-SAM technology were used to construct U937 cell lines with knockdown/overexpression of long non-coding RNA KIAA0125.qRT-PCR was used to detect the knockdown/overexpression efficiency of long non-coding RNA KIAA0125.Next,CCK-8 assay,flow cytometry,and western blot assay were used to detect the effects of knockdown/overexpression of long non-coding RNA KIAA0125 on the proliferation and apoptosis of U937 cells.Finally,western blot assay was used to detect the effect of knockdown/overexpressed long non-coding RNA KIAA0125 on Wnt/β-catenin signaling pathway-related proteins. RESULTS AND CONCLUSION:(1)The results of qRT-PCR showed that long non-coding RNA KIAA0125 was highly expressed in peripheral blood of acute myeloid leukemia patients.The results of GEPIA database showed that long non-coding RNA KIAA0125 was highly expressed in bone marrow cells of acute myeloid leukemia patients,and the high expression group had worse overall survival.(2)The knockdown efficiency of long non-coding RNA KIAA0125 in knockdown group was 70%,and the U937 cells that stably down-regulated long non-coding RNA KIAA0125 expression were successfully constructed.The expression of long non-coding RNA KIAA0125 in overexpression group was four times that of vector group,and stable U937 cells were successfully constructed.(3)Knockdown of long non-coding RNA KIAA0125 inhibited the proliferation of U937 cells and promoted their apoptosis.Overexpression of long non-coding RNA KIAA0125 promoted the proliferation of U937 cells but had no significant effect on the apoptosis of U937 cells.(4)Knockdown of long non-coding RNA KIAA0125 inhibited the activity of Wnt/β-catenin signaling pathway,while overexpression of long non-coding RNA KIAA0125 activated Wnt/β-catenin signaling pathway.These results confirm that long non-coding RNA KIAA0125 is highly expressed in acute myeloid leukemia peripheral blood.Long non-coding RNA KIAA0125 may affect the proliferation and apoptosis of U937 cells by regulating the Wnt/β-catenin signaling pathway,and may be a potential prognostic marker for acute myeloid leukemia.
3.Tissue-resident peripheral helper T cells foster hepatocellular carcinoma immune evasion by promoting regulatory B-cell expansion.
Haoyuan YU ; Mengchen SHI ; Xuejiao LI ; Zhixing LIANG ; Kun LI ; Yongwei HU ; Siqi LI ; Mingshen ZHANG ; Yang YANG ; Yang LI ; Linsen YE
Chinese Medical Journal 2025;138(17):2148-2158
BACKGROUND:
Peripheral helper T (T PH ) cells are uniquely positioned within pathologically inflamed non-lymphoid tissues to stimulate B-cell responses and antibody production. However, the phenotype, function, and clinical relevance of T PH cells in hepatocellular carcinoma (HCC) are currently unknown.
METHODS:
Blood, tumor, and peritumoral liver tissue samples from 39 HCC patients (Sep 2016-Aug 2017) and 101 HCC patients (Sep 2011-Dec 2012) at the Third Affiliated Hospital of Sun Yat-sen University were used. Flow cytometry was used to quantify the expression, phenotype, and function of T PH cells. Log-rank tests were performed to evaluate disease-free survival and overall survival in samples from 39 patients and 101 patients with HCC. T PH cells, CD19 + B cells, and T follicular helper (T FH ) cells were cultured separately in vitro or isolated from C57/B6L mice in vivo for functional assays.
RESULTS:
T PH cells highly infiltrated tumor tissues, which was correlated with tumor size, early recurrence, and shorter survival time. The tumor-infiltrated T PH cells showed a unique ICOS hi CXCL13 + IL-21 - MAF + BCL-6 - phenotype and triggered naïve B-cell differentiation into regulatory B cells. Triggering programmed cell death protein 1 (PD-1) induced the production of C-X-C motif chemokine ligand 13 (CXCL13) by T PH cells, which then suppressed tumor-specific immunity and promoted disease progression.
CONCLUSION
Our study reveals a novel regulatory mechanism of T PH cell-regulatory B-cell-mediated immunosuppression and provides an important perspective for determining the balance between the differentiation of protumorigenic T PH cells and that of antitumorigenic T FH cells in the HCC microenvironment.
Carcinoma, Hepatocellular/metabolism*
;
Liver Neoplasms/metabolism*
;
Humans
;
T-Lymphocytes, Helper-Inducer/metabolism*
;
Animals
;
Mice
;
Male
;
Female
;
Mice, Inbred C57BL
;
Middle Aged
;
B-Lymphocytes, Regulatory/metabolism*
;
Flow Cytometry
;
Interleukin-21
;
Aged
;
Chemokine CXCL13/metabolism*
4.Harnessing chemical communication in plant-microbiome and intra-microbiome interactions.
Hongfu LI ; Yaxin HU ; Siqi CHEN ; Yusufjon GAFFOROV ; Mengcen WANG ; Xiaoyu LIU
Journal of Zhejiang University. Science. B 2025;26(10):923-934
Chemical communication in plant-microbiome and intra-microbiome interactions weaves a complex network, critically shaping ecosystem stability and agricultural productivity. This non-contact interaction is driven by small-molecule signals that orchestrate crosstalk dynamics and beneficial association. Plants leverage these signals to distinguish between pathogens and beneficial microbes, dynamically modulate immune responses, and secrete exudates to recruit a beneficial microbiome, while microbes in turn influence plant nutrient acquisition and stress resilience. Such bidirectional chemical dialogues underpin nutrient cycling, co-evolution, microbiome assembly, and plant resistance. However, knowledge gaps persist regarding validating the key molecules involved in plant-microbe interactions. Interpreting chemical communication requires multi-omics integration to predict key information, genome editing and click chemistry to verify the function of biomolecules, and artificial intelligence (AI) models to improve resolution and accuracy. This review helps advance the understanding of chemical communication and provides theoretical support for agriculture to cope with food insecurity and climate challenges.
Microbiota/physiology*
;
Plants/microbiology*
;
Artificial Intelligence
;
Ecosystem
5.Enhanced radiotheranostic targeting of integrin α5β1 with PEGylation-enabled peptide multidisplay platform (PEGibody): A strategy for prolonged tumor retention with fast blood clearance.
Siqi ZHANG ; Xiaohui MA ; Jiang WU ; Jieting SHEN ; Yuntao SHI ; Xingkai WANG ; Lin XIE ; Xiaona SUN ; Yuxuan WU ; Hao TIAN ; Xin GAO ; Xueyao CHEN ; Hongyi HUANG ; Lu CHEN ; Xuekai SONG ; Qichen HU ; Hailong ZHANG ; Feng WANG ; Zhao-Hui JIN ; Ming-Rong ZHANG ; Rui WANG ; Kuan HU
Acta Pharmaceutica Sinica B 2025;15(2):692-706
Peptide-based radiopharmaceuticals targeting integrin α5β1 show promise for precise tumor diagnosis and treatment. However, current peptide-based radioligands that target α5β1 demonstrate inadequate in vivo performance owing to limited tumor retention. The use of PEGylation to enhance the tumor retention of radiopharmaceuticals by prolonging blood circulation time poses a risk of increased blood toxicity. Therefore, a PEGylation strategy that boosts tumor retention while minimizing blood circulation time is urgently needed. Here, we developed a PEGylation-enabled peptide multidisplay platform (PEGibody) for PR_b, an α5β1 targeting peptide. PEGibody generation involved PEGylation and self-assembly. [64Cu]QM-2303 PEGibodies displayed spherical nanoparticles ranging from 100 to 200 nm in diameter. Compared with non-PEGylated radioligands, [64Cu]QM-2303 demonstrated enhanced tumor retention time due to increased binding affinity and stability. Importantly, the biodistribution analysis confirmed rapid clearance of [64Cu]QM-2303 from the bloodstream. Administration of a single dose of [177Lu]QM-2303 led to robust antitumor efficacy. Furthermore, [64Cu]/[177Lu]QM-2303 exhibited low hematological and organ toxicity in both healthy and tumor-bearing mice. Therefore, this study presents a PEGibody-based radiotheranostic approach that enhances tumor retention time and provides long-lasting antitumor effects without prolonging blood circulation lifetime. The PEGibody-based radiopharmaceutical [64Cu]/[177Lu]QM-2303 shows great potential for positron emission tomography imaging-guided targeted radionuclide therapy for α5β1-overexpressing tumors.
6.Fibroblast activation protein targeting radiopharmaceuticals: From drug design to clinical translation.
Yuxuan WU ; Xingkai WANG ; Xiaona SUN ; Xin GAO ; Siqi ZHANG ; Jieting SHEN ; Hao TIAN ; Xueyao CHEN ; Hongyi HUANG ; Shuo JIANG ; Boyang ZHANG ; Yingzi ZHANG ; Minzi LU ; Hailong ZHANG ; Zhicheng SUN ; Ruping LIU ; Hong ZHANG ; Ming-Rong ZHANG ; Kuan HU ; Rui WANG
Acta Pharmaceutica Sinica B 2025;15(9):4511-4542
The activation proteins released by fibroblasts in the tumor microenvironment regulate tumor growth, migration, and treatment response, thereby influencing tumor progression and therapeutic outcomes. Owing to the proliferation and metastasis of tumors, fibroblast activation protein (FAP) is typically highly expressed in the tumor stroma, whereas it is nearly absent in adult normal tissues and benign lesions, making it an attractive target for precision medicine. Radiolabeled agents targeting FAP have the potential for targeted cancer diagnosis and therapy. This comprehensive review aims to describe the evolution of FAPI-based radiopharmaceuticals and their structural optimization. Within its scope, this review summarizes the advances in the use of radiolabeled small molecule inhibitors for tumor imaging and therapy as well as the modification strategies for FAPIs, combined with insights from structure-activity relationships and clinical studies, providing a valuable perspective for radiopharmaceutical clinical development and application.
7.mRNA display-enabled discovery of proximity-triggered covalent peptide-drug conjugates.
Ruixuan WANG ; Siqi RAN ; Jiabei GUO ; Da HU ; Xiang FENG ; Jixia ZHOU ; Zhanzhi ZHANG ; Futian LIANG ; Jiamin SHANG ; Lingxin BU ; Kaiyi WANG ; Junyi MAO ; Huixin LUO ; Rui WANG
Acta Pharmaceutica Sinica B 2025;15(10):5474-5485
Peptide-drug conjugates (PDCs) have emerged as a promising modality in precision oncology, enabling targeted delivery of cytotoxic payloads while minimizing off-target toxicity. The integration of covalent warheads, such as those based on sulfur(VI) fluoride exchange (SuFEx) chemistry, enhances drug-target residence time and tumor accumulation. However, existing screening methods for covalent peptide (CP) libraries require post-translational warhead conjugation, limiting throughput. Here, we present an integrated mRNA display platform that incorporates covalent warheads during ribosomal synthesis, enabling efficient screening of ultra-diverse covalent macrocyclic peptide libraries (>1013 variants). This approach, using site-specific incorporation of N-chloroacetyl-d-phenylalanine and fluorosulfate-l-tyrosine, accelerated the discovery of irreversibly binding (K i = 3.58 μmol/L) Nectin-4-targeting peptide CP-N1-N3 via proximity-triggered SuFEx. The peptide was further conjugated to cytotoxic payloads, yielding the covalent PDC CP-N1-MMAE with potent cytotoxicity (IC50 ≈ 43 nmol/L) against MDA-MB-468 cells. This platform establishes a new paradigm for precision covalent drug discovery.
8.Effect of electroacupuncture on liver regeneration after partial hepatectomy in mice and role of Notch signaling pathway
Meilu YU ; Saiya ZHANG ; Siqi CHEN ; Fen WANG ; Sha LI ; Hongyu HU ; Weiqian TIAN
Chinese Journal of Anesthesiology 2024;44(7):843-849
Objective:To evaluate the effect of electroacupuncture on liver regeneration after partial hepatectomy in mice and the role of the Notch signaling pathway.Methods:Thirty-six SPF healthy male C57BL/6 mice, aged 6 weeks, weighing 20-22 g, were divided into 6 groups ( n=6 each) using a random number table method: sham operation group (group S), partial hepatectomy group (group PH), non-acupoint electroacupuncture+ partial hepatectomy group (group NPH), partial hepatectomy+ Fli-06 group (group PH+ F), acupoint electroacupuncture+ partial hepatectomy group (group EPH), and acupoint electroacupuncture+ partial hepatectomy+ Fli-06 group (group EPH+ F). All the mice except for group S underwent partial hepatectomy. Fli-06 4.8 mg/kg was intraperitoneally injected starting from 2 days before surgery, once a day, until the mice were sacrificed in group PH+ F and group EPH+ F, while the equal volume of 0.9% sodium chloride solution was injected in the other groups. In EPH group, electroacupuncture of bilateral " Zusanli" acupoints lasting for 15 min was performed using continuous waves with a frequency of 2 Hz and an intensity of 1 mA once a day starting from the time point immediately after surgery for 3 consecutive days. Mice were anesthetized at day 2 after partial hepatectomy, and blood samples were taken from the eyeball for determination of the serum alanine transaminase (ALT) and aspartate aminotransferase (AST) concentrations (using a fully automated biochemical analyzer) and concentrations of serum epidermal growth factor (EGF) and hepatocyte growth factor (HGF) (by enzyme-linked immunosorbent assay). The mice were subsequently sacrificed and liver tissues were taken for calculation of the liver mass to body mass ratio and for determination of the expression of liver proliferation marker Ki-67 (by immunohistochemical staining), proliferating cell nuclear antigen (PCNA), cyclin D1 (CCND1), Notch Intracellular Domain (NICD), and hypoxia-inducible factor-1alpha (HIF-1α) (using Western blot) and Notch1, jagged canonical Notch ligand 1 (Jagged1) and hairy and enhancer of split 1 (Hes1) mRNA (by real-time polymerase chain reaction). Results:Compared with group S, the serum ALT, AST, EGF and HGF concentrations were significantly increased, and the expression of hepatic Notch1, Jagged1 and Hes1 mRNA and Ki-67, PCNA, CCND1 and NICD was up-regulated in group PH ( P<0.05 or 0.01). Compared with group PH, the liver mass to body mass ratio and serum EGF and HGF concentrations were significantly increased, the serum ALT and AST concentrations were decreased, and the expression of hepatic Notch1, Jagged1, Hes1 mRNA and Ki-67, PCNA, CCND1, NICD and HIF-1α was up-regulated in group EPH, and the liver mass to body mass ratio and the serum HGF concentrations were significantly decreased, the serum ALT and AST concentrations were increased, and the expression of hepatic Jagged1 and Hes1 mRNA and Ki-67, PCNA, CCND1, NICD, and HIF-1α was down-regulated in group PH+ F ( P<0.05 or 0.01). Compared with group EPH, the liver mass to body mass ratio and serum EGF and HGF concentrations were significantly decreased, the serum ALT and AST concentrations were increased, and the expression of hepatic Notch1, Jagged1, Hes1 mRNA and Ki-67, PCNA, CCND1, NICD and HIF-1α was down-regulated in group EPH+ F ( P<0.01). Conclusions:Electroacupuncture at Zusanli acupoint promotes liver regeneration after partial hepatectomy in mice, and the mechanism may be related to the activation of the Notch signaling pathway.
9.Simultaneous multi-slice technique applicated in diffusion tensor imaging for evaluating brain glioma
Yakun HE ; Xiaoyu CHEN ; Siqi YI ; Yuntao HU ; Mei LAN ; Jia CHEN ; Jing REN ; Peng ZHOU ; Heping DENG
Chinese Journal of Interventional Imaging and Therapy 2024;21(8):495-498
Objective To explore the application value of simultaneous multi-slice(SMS)technique in diffusion tensor imaging(DTI)for evaluating brain glioma.Methods Thirty-four brain glioma patients were prospectively enrolled,and brain conventional DTI and SMS-DTI were acquired.The subjective scores of image quality,signal-to-noise ratio(SNR)and contrast-to-noise ratio(CNR)were compared between SMS-DTI and conventional DTI,so were the numbers of whole brain fiber bundles,tumor relative fractional anisotropy(rFA)and relative mean diffusivity(rMD)obtained based on SMS-DTI and conventional DTI.Results Among 34 patients,there were 23 cases of high-grade glioma and 11 cases of low-grade glioma.No significant difference of subjective scores of image quality,tumor edge clarity nor magnetic susceptibility artifacts was found between SMS-DTI and conventional DTI(all P>0.05).SNR and CNR on SMS-DTI were both lower than those on conventional DTI(both P<0.05).No significant difference of the numbers of whole brain fiber bundles,rFA nor rMD of gliomas with different pathological grades was detected based on SMS-DTI compared with those on conventional DTI(all P>0.05).Conclusion SMS applicated in DTI for evaluating brain gliomas was able to shorten acquisition time under the condition of ensuring image quality and quantitative analysis accuracy.
10.Facilitators and barriers of implementation of educational guidance intervention program for orthokeratology lens wearing: a qualitative study
Jun LIU ; Jingyu YAN ; Jinping HU ; Lili ZHENG ; Wei CHEN ; Siqi MI ; Zhiwen WANG
Chinese Journal of Modern Nursing 2024;30(33):4558-4562
Objective:To explore the facilitators and barriers in implementing the orthokeratology lens-wearing education guidance program from the perspectives of children, their families, and medical and nursing staff.Methods:Based on phenomenological research, purposive sampling was used to select five medical workers, 18 children wearing orthokeratology lenses and family members from the Optometry Center of Peking University Third Hospital as interviewees for semi-structured interviews. Colaizzi's 7-step method was used to analyze interview data.Results:Two themes (facilitators and barriers) were extracted, among which facilitators included two sub-themes (strong demand for educational guidance, trust in medical and nursing staff), and barriers consisted of two sub-themes (patient factors, external support factors) .Conclusions:In promoting the educational guidance intervention program for wearing orthokeratology lenses, medical and nursing staff need to fully play the role of facilitators, analyze and solve barriers, and ultimately promote the smooth implementation of the intervention program.

Result Analysis
Print
Save
E-mail