1.Influencing factors and construction of a nomogram predictive model for postoperative anastomotic leak in patients with carcinoma of the esophagus and gastroesophageal junction
Hao PENG ; Siqi SHENG ; Jing CHEN ; Maitiasen MAIRHABA ; Haizhu SONG ; Jun YI
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):208-215
Objective To analyze the influencing factors for postoperative anastomotic leak (AL) in carcinoma of the esophagus and gastroesophageal junction and construct a nomogram predictive model. Methods The patients who underwent radical esophagectomy at Jinling Hospital Affiliated to Nanjing University School of Medicine from January 2018 to June 2020 were included in this study. Relevant variables were screened using univariate and multivariate logistic regression analyses. A nomogram was then developed to predict the risk factors associated with postoperative AL. The predictive performance of the nomogram was validated using the receiver operating characteristic (ROC) curve. Results A total of 468 patients with carcinoma of the esophagus and gastroesophageal junction were included in the study, comprising 354 males and 114 females, with a mean age of (62.8±7.2) years. The tumors were predominantly located in the middle or lower esophagus, and 51 (10.90%) patients experienced postoperative AL. Univariate logistic regression analysis indicated that age, body mass index (BMI), tumor location, preoperative albumin levels, diabetes mellitus, anastomosis technique, anastomosis site, and C-reactive protein (CRP) levels were potentially associated with AL (P<0.05). Multivariate logistic regression analysis identified age, BMI, tumor location, diabetes mellitus, anastomosis technique, and CRP levels as independent risk factors for AL (P<0.05). A nomogram was developed based on the findings from the multivariate logistic regression analysis. The area under the receiver operating characteristic (ROC) curve was 0.803, indicating a strong concordance between the actual observations and the predicted outcomes. Furthermore, decision curve analysis demonstrated that the newly established nomogram holds significant value for clinical decision-making. Conclusion The predictive model for postoperative AL in patients with carcinoma of the esophagus and gastroesophageal junction demonstrates strong predictive validity and is essential for guiding clinical monitoring, early detection, and preventive strategies.
2.Establishment and validation of a risk prediction model for 90-day mortality in patients with acute-on-chronic liver failure based on sarcopenia
Huina CHEN ; Ming KONG ; Siqi ZHANG ; Manman XU ; Yu CHEN ; Zhongping DUAN
Journal of Clinical Hepatology 2025;41(6):1135-1142
ObjectiveTo establish and validate a new prediction model for the risk of death in patients with acute-on-chronic liver failure (ACLF) based on sarcopenia and other clinical indicators, and to improve the accuracy of prognostic assessment for ACLF patients. MethodsA total of 380 patients with ACLF who were admitted to Beijing YouAn Hospital, Capital Medical University, from January 2019 to January 2022 were enrolled, and they were divided into training group with 228 patients and testing group with 152 patients in a ratio of 6∶4 using the stratified random sampling method. For the training group, CT images were used to measure the cross-sectional area of the skeletal muscle at the third lumbar vertebra (L3), and L3 skeletal muscle index (L3-SMI) was calculated. Sarcopenia was diagnosed based on the previously established L3-SMI reference values for healthy adults in northern China. Univariate and multivariable Cox regression analyses were used to establish a sarcopenia-ACLF model which integrated sarcopenia and clinical risk factors, and a nomogram was developed for presentation. The area under the ROC curve (AUC) was used to assess the predictive performance of the model, the calibration curve was used to assess the degree of calibration, and a decision curve analysis was used to investigate the clinical application value of the model. The independent-samples t test or the Mann-Whitney U test was used for comparison of continuous data between two groups, and the chi-square test was used for comparison of categorical data between two groups. The Kaplan-Meier method was used to plot survival curves, and the Log-rank test was used for comparison between groups. The DeLong test was used for comparison of AUC between different models. ResultsThe multivariate Cox regression analysis showed that sarcopenia (hazard ratio [HR]=1.962, 95% confidence interval [CI]: 1.185 — 3.250, P=0.009), total bilirubin (HR=1.003, 95%CI: 1.002 — 1.005, P<0.001), international normalized ratio (HR=1.997, 95%CI: 1.674 — 2.382, P<0.001), and lactic acid (HR=1.382, 95%CI: 1.170 — 1.632, P<0.001) were included in the sarcopenia-ACLF model. In the training cohort, the sarcopenia-ACLF model had a larger AUC than MELD-Na score in predicting 90-day mortality in patients with ACLF (0.80 vs 0.73, Z=1.97, P=0.049). In the test cohort, the sarcopenia-ACLF model had a significantly larger AUC than MELD score (0.79 vs 0.69, Z=2.70, P=0.007) and MELD-Na score (0.79 vs 0.68, Z=2.92, P=0.004). The calibration curve showed that the model had good calibration ability, with a relatively good consistency between the predicted risk of mortality and the observed results. The DCA results showed that within a reasonable range of threshold probabilities, the sarcopenia-ACLF model showed a greater net benefit than MELD and MELD-Na scores in both the training cohort and the test cohort. ConclusionThe sarcopenia-ACLF model developed in this study provides a more accurate tool for predicting the risk of 90-day mortality in ACLF patients, which provides support for clinical decision-making and helps to optimize treatment strategies.
3.Salidroside alleviates PM2.5-induced pulmonary fibrosis through PINK1/Parkin
Ruixi ZHOU ; Wenbo WU ; Limin ZHANG ; Meina WU ; Chen LIU ; Siqi LI ; Xiaohong LI ; Mengxiao LUAN ; Qin WANG ; Li YU ; Yumei LIU ; Wanwei LI
Journal of Environmental and Occupational Medicine 2025;42(10):1240-1246
Background Existing studies have confirmed that fine particulate matter (PM2.5)is one of the important factors inducing pulmonary fibrosis. Pulmonary fibrosis is the terminal stage of a major category of lung diseases characterized by the destruction of tissue structure, and eventually leading lung ventilation and ventilation dysfunction. No effective pulmonary fibrosis treatment is available yet. Objective To investigate the protective effect of salidroside on pulmonary fibrosis induced by the exposure of PM2.5 and its molecular mechanism. Methods Seventy 7-week-old male C57BL/6 mice were randomly divided into four groups: control group (intratracheal instillation of normal saline + saline by gavage, n=25), Sal group (intratracheal instillation of normal saline + Sal 60 mg·kg−1 by gavage, n=10), PM2.5 group (intratracheal instillation of PM2.5 5 mg·kg−1 + saline by gavage, n=10), and Sal + PM2.5 group (intratracheal instillation of PM2.5 5 mg·kg−1 +Sal 60 mg·kg−1 by gavage, n=10). The mice were administered by gavage once daily, intratracheal instillation once every 3 d, and every 3 d constituted an experimental cycle. At the end of the 26-30th cycles, 3 mice in the control group and 3 mice in the PM2.5 group were randomly sacrificed, and the lung tissues were collected for Masson staining to verify whether the pulmonary fibrosis model was successfully established. After 30 cycles, the model was successfully constructed. After 1 week of continuous observation, the mice were sacrificed, and the blood and lung tissues of the mice were collected to make lung tissue sections. Assay kits were correspondingly employed to detect oxidative stress indicators such as serum malondialdehyde (MDA) and superoxide dismutase (SOD). Western blotting was used to detect the expression of fibrosis-related proteins (Collagen-III, α-SMA), mitochondrial dynamics-related proteins (MFN1, Drp1), and mitophagy-related proteins (PINK1, Parkin, and LC3). Results Compared with the control group, the weight gain rate of the PM2.5 group was slowed down (P<0.05), which was alleviated by the Sal intervention (P<0.05). The lung coefficient increased after the PM2.5 exposure (P<0.05), which was alleviated by Sal intervention. Compared with the control group, the PM2.5 group showed severe alveolar structure damage, inflammatory cell infiltration, and blue collagen deposition, and significantly increased the lung injury score, collagen volume fraction (CVF), Szapiel score, and Ashcroft score (P<0.05), as well as serum oxidative stress levels (P<0.05). The protein expression levels of Collagen-III, α-SMA, Drp1, PINK1, Parkin, and LC3 II/I were increased (P<0.05), and the expression of MFN1 was decreased (P<0.05). Compared with the PM2.5 group, the Sal intervention alleviated lung injury, reduced inflammatory cell infiltration and collagen deposition, showing decreased lung injury score, CVF, Szapiel score, and Ashcroft score (P<0.05), and decreased serum oxidative stress levels (P<0.05); the protein expression levels of Collagen-III, α-SMA, PINK1, Parkin, and LC3 II/I were decreased (P<0.05), the expression level of Drp1 was decreased, and the expression level of MFN1 was increased. Conclusion In the process of pulmonary fibrosis induced by PM2.5 exposure in mice, Sal may affect mitochondrial autophagy through PINK1/Parkin pathway and play a protective role. The specific mechanism needs to be further verified.
4.Pulmonary function condition and influencing factors among occupational populations in Wuhan
Hong ZHANG ; Zhaomin CHEN ; Kaiji LANG ; Shuo YANG ; Siqi CHEN ; Yong YAO ; Zhenlong CHEN ; Dongming WANG
Journal of Public Health and Preventive Medicine 2025;36(6):30-34
Objective To analyze the lung function condition and the prevalence of pulmonary ventilation disorders in the occupational population of Wuhan, and to explore their influencing factors. Methods Physical examination data from the Wuhan Prevention and Treatment Center for Occupational Diseases were used in this study, and finally 9499 people were selected as the study subjects. The linear regression model and logistic regression model were used to analyze the influencing factors of pulmonary ventilation function and pulmonary dysfunction. The restricted cubic spline was used to explore the nonlinear relationship. Results The prevalence of pulmonary ventilation disorders was 1.7%, and the lung function indexes FVC, FEV1, and FEV1/FVC were significantly lower in the population aged >27 years than in the population aged <27 years (P<0.001). The lung function indexes FVC and FEV1 were significantly lower in females than in males (P<0.001). The lung function indexes FVC and FEV1 were significantly lower in underweight occupational groups than in normal-weight groups (P<0.001), and FVC and FEV1 were significantly lower in dust-exposed occupational groups than in groups without dust exposure(P<0.05). Restricted cubic spline plots showed a nonlinear relationship between age and lung function indexes FVC and FEV1 (Pnonlinear< 0.05). Age and BMI were the risk factors for pulmonary ventilation disorders. Conclusion Age, gender, BMI, and dust exposure are risk factors for decreased FVC and FEV1. Age is the risk factor for decreased FEV1/FVC. Age and BMI are the risk factors for pulmonary ventilation disorders.
5.Harnessing chemical communication in plant-microbiome and intra-microbiome interactions.
Hongfu LI ; Yaxin HU ; Siqi CHEN ; Yusufjon GAFFOROV ; Mengcen WANG ; Xiaoyu LIU
Journal of Zhejiang University. Science. B 2025;26(10):923-934
Chemical communication in plant-microbiome and intra-microbiome interactions weaves a complex network, critically shaping ecosystem stability and agricultural productivity. This non-contact interaction is driven by small-molecule signals that orchestrate crosstalk dynamics and beneficial association. Plants leverage these signals to distinguish between pathogens and beneficial microbes, dynamically modulate immune responses, and secrete exudates to recruit a beneficial microbiome, while microbes in turn influence plant nutrient acquisition and stress resilience. Such bidirectional chemical dialogues underpin nutrient cycling, co-evolution, microbiome assembly, and plant resistance. However, knowledge gaps persist regarding validating the key molecules involved in plant-microbe interactions. Interpreting chemical communication requires multi-omics integration to predict key information, genome editing and click chemistry to verify the function of biomolecules, and artificial intelligence (AI) models to improve resolution and accuracy. This review helps advance the understanding of chemical communication and provides theoretical support for agriculture to cope with food insecurity and climate challenges.
Microbiota/physiology*
;
Plants/microbiology*
;
Artificial Intelligence
;
Ecosystem
6.Enhanced radiotheranostic targeting of integrin α5β1 with PEGylation-enabled peptide multidisplay platform (PEGibody): A strategy for prolonged tumor retention with fast blood clearance.
Siqi ZHANG ; Xiaohui MA ; Jiang WU ; Jieting SHEN ; Yuntao SHI ; Xingkai WANG ; Lin XIE ; Xiaona SUN ; Yuxuan WU ; Hao TIAN ; Xin GAO ; Xueyao CHEN ; Hongyi HUANG ; Lu CHEN ; Xuekai SONG ; Qichen HU ; Hailong ZHANG ; Feng WANG ; Zhao-Hui JIN ; Ming-Rong ZHANG ; Rui WANG ; Kuan HU
Acta Pharmaceutica Sinica B 2025;15(2):692-706
Peptide-based radiopharmaceuticals targeting integrin α5β1 show promise for precise tumor diagnosis and treatment. However, current peptide-based radioligands that target α5β1 demonstrate inadequate in vivo performance owing to limited tumor retention. The use of PEGylation to enhance the tumor retention of radiopharmaceuticals by prolonging blood circulation time poses a risk of increased blood toxicity. Therefore, a PEGylation strategy that boosts tumor retention while minimizing blood circulation time is urgently needed. Here, we developed a PEGylation-enabled peptide multidisplay platform (PEGibody) for PR_b, an α5β1 targeting peptide. PEGibody generation involved PEGylation and self-assembly. [64Cu]QM-2303 PEGibodies displayed spherical nanoparticles ranging from 100 to 200 nm in diameter. Compared with non-PEGylated radioligands, [64Cu]QM-2303 demonstrated enhanced tumor retention time due to increased binding affinity and stability. Importantly, the biodistribution analysis confirmed rapid clearance of [64Cu]QM-2303 from the bloodstream. Administration of a single dose of [177Lu]QM-2303 led to robust antitumor efficacy. Furthermore, [64Cu]/[177Lu]QM-2303 exhibited low hematological and organ toxicity in both healthy and tumor-bearing mice. Therefore, this study presents a PEGibody-based radiotheranostic approach that enhances tumor retention time and provides long-lasting antitumor effects without prolonging blood circulation lifetime. The PEGibody-based radiopharmaceutical [64Cu]/[177Lu]QM-2303 shows great potential for positron emission tomography imaging-guided targeted radionuclide therapy for α5β1-overexpressing tumors.
7.Functional aptamer evolution-enabled elucidation of a melanoma migration-related bioactive epitope.
Hong XUAN ; Siqi BIAN ; Qinguo LIU ; Jun LI ; Shaojin LI ; Sharpkate SHAKER ; Haiyan CAO ; Tongxuan WEI ; Panzhu YAO ; Yifan CHEN ; Xiyang LIU ; Ruidong XUE ; Youbo ZHANG ; Liqin ZHANG
Acta Pharmaceutica Sinica B 2025;15(6):3196-3209
Metastasis is the leading cause of death from cutaneous melanoma. Identifying metastasis-related targets and developing corresponding therapeutic strategies are major areas of focus. While functional genomics strategies provide powerful tools for target discovery, investigations at the protein level can directly decode the bioactive epitopes on functional proteins. Aptamers present a promising avenue as they can explore membrane proteomes and have the potential to interfere with cell function. Herein, we developed a target and epitope discovery platform, termed functional aptamer evolution-enabled target identification (FAETI), by integrating affinity aptamer acquisition with phenotype screening and target protein identification. Utilizing the aptamer XH3C, which was screened for its migration-inhibitory function, we identified the Chondroitin Sulfate Proteoglycan 4 (CSPG4), as a potential target involved in melanoma migration. Further evidence demonstrated that XH3C induces cytoskeletal rearrangement by blocking the interaction between the bioactive epitope of CSPG4 and integrin α4. Taken together, our study demonstrates the robustness of aptamer-based molecular tools for target and epitope discovery. Additionally, XH3C is an affinity and functional molecule that selectively binds to a unique epitope on CSPG4, enabling the development of innovative therapeutic strategies.
8.Augmentation of PRDX1-DOK3 interaction alleviates rheumatoid arthritis progression by suppressing plasma cell differentiation.
Wenzhen DANG ; Xiaomin WANG ; Huaying LI ; Yixuan XU ; Xinyu LI ; Siqi HUANG ; Hongru TAO ; Xiao LI ; Yulin YANG ; Lijiang XUAN ; Weilie XIAO ; Dean GUO ; Hao ZHANG ; Qiong WU ; Jie ZHENG ; Xiaoyan SHEN ; Kaixian CHEN ; Heng XU ; Yuanyuan ZHANG ; Cheng LUO
Acta Pharmaceutica Sinica B 2025;15(8):3997-4013
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by persistent inflammation and joint damage, accompanied by the accumulation of plasma cells, which contributes to its pathogenesis. Understanding the genetic alterations occurring during plasma cell differentiation in RA can deepen our comprehension of its pathogenesis and guide the development of targeted therapeutic interventions. Here, our study elucidates the intricate molecular mechanisms underlying plasma cell differentiation by demonstrating that PRDX1 interacts with DOK3 and modulates its degradation by the autophagy-lysosome pathway. This interaction results in the inhibition of plasma cell differentiation, thereby alleviating the progression of collagen-induced arthritis. Additionally, our investigation identifies Salvianolic acid B (SAB) as a potent small molecular glue-like compound that enhances the interaction between PRDX1 and DOK3, consequently impeding the progression of collagen-induced arthritis by inhibiting plasma cell differentiation. Collectively, these findings underscore the therapeutic potential of developing chemical stabilizers for the PRDX1-DOK3 complex in suppressing plasma cell differentiation for RA treatment and establish a theoretical basis for targeting PRDX1-protein interactions as specific therapeutic targets in various diseases.
9.Fibroblast activation protein targeting radiopharmaceuticals: From drug design to clinical translation.
Yuxuan WU ; Xingkai WANG ; Xiaona SUN ; Xin GAO ; Siqi ZHANG ; Jieting SHEN ; Hao TIAN ; Xueyao CHEN ; Hongyi HUANG ; Shuo JIANG ; Boyang ZHANG ; Yingzi ZHANG ; Minzi LU ; Hailong ZHANG ; Zhicheng SUN ; Ruping LIU ; Hong ZHANG ; Ming-Rong ZHANG ; Kuan HU ; Rui WANG
Acta Pharmaceutica Sinica B 2025;15(9):4511-4542
The activation proteins released by fibroblasts in the tumor microenvironment regulate tumor growth, migration, and treatment response, thereby influencing tumor progression and therapeutic outcomes. Owing to the proliferation and metastasis of tumors, fibroblast activation protein (FAP) is typically highly expressed in the tumor stroma, whereas it is nearly absent in adult normal tissues and benign lesions, making it an attractive target for precision medicine. Radiolabeled agents targeting FAP have the potential for targeted cancer diagnosis and therapy. This comprehensive review aims to describe the evolution of FAPI-based radiopharmaceuticals and their structural optimization. Within its scope, this review summarizes the advances in the use of radiolabeled small molecule inhibitors for tumor imaging and therapy as well as the modification strategies for FAPIs, combined with insights from structure-activity relationships and clinical studies, providing a valuable perspective for radiopharmaceutical clinical development and application.
10.Diagnostic and predictive value of ferroptosis-related genes in patients with ulcerative colitis.
Rongmao HE ; Zeyang FANG ; Yunyun ZHANG ; Youliang WU ; Shixiu LIANG ; Tao JI ; Kequan CHEN ; Siqi WANG
Journal of Southern Medical University 2025;45(9):1927-1937
OBJECTIVES:
To explore the value of ferroptose-related genes in the diagnosis and prediction of ulcerative colitis (UC).
METHODS:
We used UC dataset from the GEO database to screen for differentially expressed genes (DEGs) in UC. The DEGs related to ferroptositis were screened from the FerrDb database and their functions were analyzed. The hub genes were identified by constructing the protein-protein interaction network (PPI), the differences in immune infiltration levels between UC and the control group were evaluated using CIBERSORT, and the diagnostic values of the hub genes for UC were verified by using the training set. In a mouse model of UC, we examined the expression levels of the hub genes in the colon tissues of the mice using real-time fluorescence quantitative PCR (qPCR).
RESULTS:
We identified a total of 76 DEGs related to ferroptosis. Functional enrichment analysis showed that these genes were significantly enriched in ferroptosis and hypoxia pathways. The PPI network identified 10 hub genes, and 9 of them were highly expressed in UC. Analysis of immune cell infiltration showed that 27 cell types were significantly increased in UC (P<0.05), and the immune checkpoints-related genes had the strongest correlation with the hub gene PPARG (P<0.05). Verification analysis using the training set showed that P4HB, PPARG and STAT3 had the best predictive value for UC (P<0.05). In the UC mouse model, the expression of PPARG was significantly decreased and the expressions of P4HB and STAT3 were significantly increased in the colon tissues of the mice as compared with the normal mice.
CONCLUSIONS
Ferroptose-related genes have significant value for diagnosis and prediction of UC.
Colitis, Ulcerative/genetics*
;
Animals
;
Mice
;
Ferroptosis/genetics*
;
Humans
;
Protein Interaction Maps
;
Disease Models, Animal
;
Gene Expression Profiling
;
STAT3 Transcription Factor/genetics*


Result Analysis
Print
Save
E-mail