1.Mechanism of Yantiao Prescription in Treating Lipopolysaccharide-induced Acute Lung Injury Based on Arachidonic Acid Metabolic Pathways
Pengcheng LI ; Tianyang CHEN ; Rong FANG ; Anna ZHANG ; Sijia WU ; Wei LIU ; Qian WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):101-110
ObjectiveTo clarify the anti-inflammatory and lung-protective effects of Yantiao prescription on lipopolysaccharide (LPS)-induced acute lung injury (ALI), and to explore the impact of Yantiao prescription on the metabolic pathways of arachidonic acid (AA) in vivo. MethodsThirty male C57BL/6J mice were randomly divided into the following groups based on body weight: normal group, model group, dexamethasone group (2 mg·kg-1), low-dose Yantiao prescription group (18 g·kg-1), and high-dose Yantiao prescription group (36 g·kg-1), with 6 mice in each group. The ALI mouse model was established by intraperitoneal injection of LPS. The treatment groups received oral gavage once a day for 7 consecutive days, and serum and lung tissue were collected at the end of the experiment. The content of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in serum was detected by enzyme-linked immunosorbent assay (ELISA). Hematoxylin-eosin (HE) staining was used to assess lung tissue pathology. The wet/dry weight ratio (W/D) and myeloperoxidase (MPO) activity in lung tissue were measured. The content of AA metabolites in serum and lung tissue was measured by liquid chromatography triple quadrupole-mass spectrometry (LC-MS/MS). ResultsCompared with the conditions in the normal group, the content of serum pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 in the model group was significantly increased (P<0.01). The alveolar structure in mice was severely damaged, with markedly thickened alveolar walls and extensive inflammatory cell infiltration. The W/D ratio and MPO activity in lung tissue were significantly increased (P<0.01). The content of AA metabolites, including prostaglandin D2 (PGD2), prostaglandin E2 (PGE2), 11(S)-hydroxy-eicosatetraenoic acid [11(S)-HETE], and 5-hydroxy-eicosatetraenoic acid (5-HETE) in serum and lung tissue was significantly increased (P<0.05), while the content of 11,12-epoxyeicosatrienoic acid (11,12-EET) and 14,15-epoxyeicosatrienoic acid (14,15-EET) in serum was significantly decreased (P<0.01). Compared with the results in the model group, the content of serum pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 in the dexamethasone group, low-dose Yantiao prescription group, and high-dose Yantiao prescription group was significantly reduced (P<0.05). Mild thickening of alveolar walls, scattered inflammatory cell infiltration, and relatively intact tissue structure with improved alveolar architecture were observed. The W/D ratio and MPO activity in lung tissue were significantly reduced (P<0.01). The content of AA metabolites PGD2, PGE2, 11(S)-HETE, and 5-HETE in serum from the dexamethasone group was significantly decreased (P<0.05), while the content of 14,15-EET in serum significantly increased (P<0.01), and the content of 5-HETE in lung tissue significantly decreased (P<0.01). In the low-dose and high-dose Yantiao prescription groups, the content of AA metabolites PGD2, PGE2, 11(S)-HETE, and 5-HETE in serum and lung tissue was significantly decreased (P<0.05), while the content of 11,12-EET in both serum and lung tissue was significantly increased (P<0.05). ConclusionYantiao prescription has significant protective effects against LPS-induced ALI, which are related to its regulation of AA metabolic pathways in vivo.
2.Analysis of the anticoagulant effect and influencing factors of warfarin in patients after left ventricular assist device implantation guided by gene test
Ying WANG ; Jin LI ; Sijia ZHAO ; Tao CHEN ; Chengbin TANG ; Jia LIU
China Pharmacy 2025;36(17):2160-2164
OBJECTIVE To evaluate the effectiveness and safety of warfarin anticoagulation therapy guided by gene test in patients undergoing left ventricular assist device (LVAD) implantation, and to analyze the influencing factors of warfarin anticoagulation efficacy. METHODS Patients who underwent LVAD implantation at the Heart and Vascular Center of Northern Jiangsu People’s Hospital from January 2023 to October 2024 and required warfarin anticoagulant therapy were selected as the study subjects. They were divided into genetic testing group (n=51) and empirical treatment group (n=17) based on whether they underwent CYP2C9 and VKORC1 gene test. The gene test group was given warfarin based on the predicted dose calculated by gene test, while the empirical treatment group was given warfarin by clinical doctors based on international normalized ratio (INR) experience, all patients were given warfarin once a day. Follow-up observation was conducted for 6 months to compare the effectiveness [time in therapeutic range(TTR), the time required to reach INR for the first time, the incidence of embolic events, the incidence of INR<1.5 events] and safety (the incidence of major and minor bleeding events,the incidence of INR>3.5 events) of warfarin treatment between two groups of patients. According to whether the patient’s TTR was ≥60%, they were divided into TTR≥60% group (n=20) and TTR<60% group (n=48). Univariate and multivariate binary Logistic regression analysis were used to determine the factors affecting the anticoagulant effect of warfarin in patients. RESULTS The TTR of patients in the gene test group was significantly higher than that in the empirical treatment group (P<0.05). The incidence of INR<1.5 events in the gene test group was significantly lower than in the empirical treatment group (P<0.05). The incidence of minor bleeding events and INR>3.5 events in the gene test group were lower than in the empirical treatment group, but the difference was not statistically significant (P>0.05). The results of multivariate binary Logistic regression analysis showed that gene test was an independent protective factor for warfarin anticoagulant therapy [odds ratio (OR)=10.842, 95% confidence interval (CI): 1.211-27.037, P=0.033], and the combination of statins was an independent risk factor for warfarin anticoagulant therapy [OR=0.196, 95%CI: 0.045-0.861, P=0.031]. CONCLUSIONS Under the guidance of gene test, warfarin anticoagulation therapy for LVAD patients after implantation can improve TTR, shorten the anticoagulation target time, and has good safety; meanwhile, it should be noted that the combination of statins may enhance the anticoagulant effect of warfarin, thereby increasing the risk of bleeding in patients.
3.The characteristics and clinical values of peripheral T lymphocytic subsets and functional changes in primary biliary cholangitis.
Liming ZHENG ; Jinhan LIU ; Hong LI ; Longgen LIU ; Guojun ZHENG ; Sijia DAI
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):437-443
Objective This study aimed to analyze the characteristics and clinical significance of peripheral lymphocytic subsets and cytokine levels, including interleukin 1β(IL-1β), IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12P70, IL-17A, tumor necrosis factor α(TNF-α), interferon γ(IFN-γ) and IFN-α, in patients with primary biliary cholangitis (PBC), to provide some novel insights into the pathogenesis of PBC. Methods We retrospectively collected clinical features and laboratory data from hospitalized patients who were primarily diagnosed with PBC and from healthy physical examinees at the Third People's Hospital of Changzhou between January 1, 2023, and June 30, 2024. Results A total of 152 PBC patients and 96 healthy controls who met the inclusion and exclusion criteria were enrolled. Significant differences were observed in baseline characteristics and laboratory data between the two groups. After the propensity score matching (PSM) analysis, 61 PBC patients and 61 healthy controls were successfully matched, ensuring that the general characteristics (age and gender) of the two groups were balanced and comparable. Compared to the control group, the proportion of peripheral lymphocytes was significantly higher in the PBC group (31.9% vs. 17.8%), primarily due to an increase in CD4+ T cells (46.77% vs. 41.19%), while CD8+T cells were significantly decreased (19.73% vs. 22.07%). Notably, the proportions of CD4+ programmed cell death 1 (PD-1)+ T and CD8+PD-1+ T cells were elevated, with CD8+PD-1+ T cells showing a significant positive correlation with the severity of liver inflammation (r=0.41). Furthermore, the mitochondrial mass (MM) of CD4+ T cells was significantly increased in PBC patients, whereas no significant changes were observed in the MM of CD8+ T cells or the mitochondrial membrane potential (MMP) of CD3+ T cells. Additionally, the plasma levels of cytokines, such as IL-4, IL-8, IL-10 and IFN-α, were abnormally elevated. The plasma levels of IL-5 and IL-1β were negatively correlated with the stage of liver fibrosis in patients with PBC (r=-0.52). Conclusion The overactivation and proliferation of CD4+ T cells, along with the suppression of CD8+ T cell function and increased PD-1 expression leads to T cell exhaustion, indicating significant immunological alterations in PBC patients. These changes are closely associated with the disease progression. Additionally, cytokines are likely involved in the immune regulation process of PBC and may influence the pathogenic mechanisms of the disease. Regular monitoring of lymphocyte subsets and cytokine levels can help assess the immune status and disease activity in patients with PBC, thereby guiding the individualized treatment strategies.
Humans
;
Male
;
Female
;
Middle Aged
;
Liver Cirrhosis, Biliary/blood*
;
Retrospective Studies
;
T-Lymphocyte Subsets/immunology*
;
Aged
;
Cytokines/blood*
;
Adult
;
CD8-Positive T-Lymphocytes/immunology*
4.Cytoplasmic and nuclear NFATc3 cooperatively contributes to vascular smooth muscle cell dysfunction and drives aortic aneurysm and dissection.
Xiu LIU ; Li ZHAO ; Deshen LIU ; Lingna ZHAO ; Yonghua TUO ; Qinbao PENG ; Fangze HUANG ; Zhengkun SONG ; Chuanjie NIU ; Xiaoxia HE ; Yu XU ; Jun WAN ; Peng ZHU ; Zhengyang JIAN ; Jiawei GUO ; Yingying LIU ; Jun LU ; Sijia LIANG ; Shaoyi ZHENG
Acta Pharmaceutica Sinica B 2025;15(7):3663-3684
This study investigated the role of the nuclear factor of activated T cells c3 (NFATc3) in vascular smooth muscle cells (VSMCs) during aortic aneurysm and dissection (AAD) progression and the underlying molecular mechanisms. Cytoplasmic and nuclear NFATc3 levels were elevated in human and mouse AAD. VSMC-NFATc3 deletion reduced thoracic AAD (TAAD) and abdominal aortic aneurysm (AAA) progression in mice, contrary to VSMC-NFATc3 overexpression. VSMC-NFATc3 deletion reduced extracellular matrix (ECM) degradation and maintained the VSMC contractile phenotype. Nuclear NFATc3 targeted and transcriptionally upregulated matrix metalloproteinase 9 (MMP9) and MMP2, promoting ECM degradation and AAD development. NFATc3 promoted VSMC phenotypic switching by binding to eukaryotic elongation factor 2 (eEF2) and inhibiting its phosphorylation in the VSMC cytoplasm. Restoring eEF2 reversed the beneficial effects in VSMC-specific NFATc3-knockout mice. Cabamiquine-targets eEF2 and inhibits protein synthesis-inhibited AAD development and progression in VSMC-NFATc3-overexpressing mice. VSMC-NFATc3 promoted VSMC switch and ECM degradation while exacerbating AAD development, making it a novel potential therapeutic target for preventing and treating AAD.
5.High glucose induces hippocampal neuron impairment through the SKP1/COX7C pathway: A potential mechanism for perimenopausal depression.
Ziqi WANG ; Zhiyuan LIU ; Sijia FENG ; Xintong SONG ; Dequan LIU ; Ning MA ; Xinyue ZHANG ; Weiwei LIU ; Dan Ohtan WANG ; Xiaoling LIU ; Takashi IKEJIMA
Acta Pharmaceutica Sinica B 2025;15(11):5832-5853
Perimenopause raises the risk and incidence of depression, whereas the underlying molecular mechanism remains unclear. Disturbed glucose regulation has been widely documented in depressive disorders, which renders the brain susceptible to various stresses such as estrogen depletion. However, whether and how glucose dysfunction regulates depression-like behaviors and neuronal damage in perimenopausal transition remains unexplored. Here, a prominent depressive phenotype was found in perimenopausal mice induced by the ovarian toxin 4-vinylcyclohexene diepoxide (VCD). The VCD depression susceptible group (VCDSS) and the VCD depression resilient group (VCDRES) were determined using a ROC-based behavioral screening approach. We found that the hippocampus, a crucial region linked to depression, had hyperglycemia and mitochondrial abnormalities. Interestingly, oral administration of the SGLT2 inhibitor empagliflozin (EMPA) and intrahippocampal glucose infusion suggest a close relationship between hyperglycemia in the hippocampus and the susceptibility to depression. We verified that cytochrome c oxidase 7c (COX7C) downregulation is a potential cause of the high glucose-induced neuronal injury using proteomic screening and biochemical validations. High glucose causes COX7C to be ubiquitinated in a S-phase kinase associated protein 1 (SKP1)-dependent manner. According to these results, SKP1/COX7C represents a unique therapeutic target and a novel molecular route for treating perimenopausal depression.
6.Metabolome and transcriptome association study reveals biosynthesis of specialized benzylisoquinoline alkaloids in Phellodendron amurense.
Tingxia LIU ; Wanran ZHANG ; Sijia WANG ; Ya TIAN ; Yifan WANG ; Ranran GAO ; Shilin CHEN ; Wei SUN ; Wei MA ; Zhichao XU
Chinese Herbal Medicines 2025;17(1):178-188
OBJECTIVE:
Benzylisoquinoline alkaloids (BIAs) have pharmacological functions and clinical use. BIAs are mainly distributed in plant species across the order Ranunculales and the genus Phellodendron from Sapindales. The BIA biosynthesis has been intensively investigated in Ranunculales species. However, the accumulation mechanism of BIAs in Phellodendron is largely unknown. The aim of this study is to unravel the biosynthetic pathways of BIAs in Phellodendron amurens.
METHODS:
The transcriptome and metabolome data from 18 different tissues of P. amurense were meticulously sequenced and subsequently subjected to a thorough analysis. Weighted gene co-expression network analysis (WGCNA), a powerful systems biology approach that facilitates the construction and subsequent analysis of co-expression networks, was utilized to identify candidate genes involved in BIAs biosynthesis. Following this, recombinant plasmids containing candidate genes were expressed in Escherichia coli, a widely used prokaryotic expression system. The purpose of this genetic engineering endeavor was to express the candidate genes within the bacteria, thereby enabling the assessment of the resultant enzyme activity.
RESULTS:
The synonymous substitutions per synonymous site for paralogs indicated that at least one whole genome duplication event has occurred. The potential BIA biosynthetic pathway of P. amurense was proposed, and two PR10/Bet v1 members, 14 CYP450s, and 33 methyltransferases were selected as related to BIA biosynthesis. One PR10/Bet v1 was identified as norcoclaurine synthase, which could catalyze dopamine and 4-hydroxyphenylacetaldehyde into (S)-norcoclaurine.
CONCLUSION
Our studies provide important insights into the biosynthesis and evolution of BIAs in non-Ranunculales species.
7.Protective mechanism of Paeoniae Radix Alba against chemical liver injury based on network pharmacology, molecular docking, and in vitro experiments
Shuangqiao Liu ; Xin Liu ; Sijia Jiang ; Min Fu ; Jinxi Hu ; Jiaqi Liu ; Xiaoxu Fan ; Yingtong Feng ; Shujing Zhang ; Jingxia Wang
Journal of Traditional Chinese Medical Sciences 2024;11(1):55-66
Objective:
To explore and validate the potential targets of Paeoniae Radix Alba (P. Radix, Bai Shao) in protecting against chemical liver injury through network pharmacology, molecular docking technology, and in vitro cell experiments.
Methods:
Network pharmacology was used to identify the common potential targets of P. Radix and chemical liver injury. Molecular docking was used to fit the components, which were subsequently verified in vitro. A cell model of hepatic fibrosis was established by activating hepatic stellate cell (HSC)-LX2 cells with 10 ng/mL transforming growth factor-β1. The cells were exposed to different concentrations of total glucosides of paeony (TGP), the active substance of P. Radix, and then evaluated using the cell counting kit-8 assay, enzyme-linked immunosorbent assay, and western blot.
Results:
Analysis through network pharmacology revealed 13 key compounds of P. Radix, and the potential targets for preventing chemical liver injury were IL-6, AKT serine/threonine kinase 1, jun proto-oncogene, heat shock protein 90 alpha family class A member 1 (HSP90AA1), peroxisome proliferator activated receptor gamma (PPARG), PTGS2, and CASP3. Gene Ontology (GO) enrichment analysis indicated the involvement of response to drugs, membrane rafts, and peptide binding. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the main pathways involved lipid and atherosclerosis and chemical carcinogenesis-receptor activation. Paeoniflorin and albiflorin exhibited strong affinity for HSP90AA1, PTGS2, PPARG, and CASP3. Different concentrations of TGP can inhibit the expression of COL-Ⅰ, COL-Ⅲ, IL-6, TNF-α, IL-1β, HSP-90α, and PTGS2 while increasing the expression of PPAR-γ and CASP3 in activated HSC-LX2 cells.
Conclusion
P. Radix primarily can regulate targets such as HSP90AA1, PTGS2, PPARG, CASP3. TGP, the main active compound of P. Radix, protects against chemical liver injury by reducing the inflammatory response, activating apoptotic proteins, and promoting the apoptosis of activated HSCs.
8.Association between cognitive function and anterior cingulate cortex gamma-amino-butyric acid concentrations in patients with depression before and after treatment
Siyan ZAN ; Congwen KU ; Shaokun ZHAO ; Ruihua MA ; Sijia LIU ; Jing SHI ; Yingna LI ; Hui LI ; Xuan WANG ; Fude YANG ; Yunlong TAN ; Baopeng TIAN ; Zhiren WANG
Chinese Mental Health Journal 2024;38(9):737-744
Objective:To explore the association between cognitive function and the level of gamma-amino-butyric acid(GABA)in anterior cingulate cortex(ACC)before and after treatment in patients with major depres-sion disorder.Methods:Totally 31 medication-naive patients with major depression disorder meeting the criteria of the Diagnostic and Statistical Manual of Mental Disorders,Fifth Edition(DSM-5)and 33 normal controls were col-lected.Each eligible patient received treatment with selective serotonin reuptake inhibitor agents for 8 weeks.The MATRICS Consensus Cognitive Battery(MCCB)was used to evaluate the cognitive function.By means of 1H magnetic resonance spectroscopy,anterior cingulate cortex GABA concentrations were measured.Results:At base-line,the concentration of ACC GABA relative to water(GABA+/W)was lower in the patient group than in the control group(P<0.05)and increased after treatment(P<0.05).ACC GABA+/W was negatively associated with verbal learning and visual memory score in patient group at baseline(correlation coefficient and P value were r=-0.40,P<0.05;r=-0.42,P<0.05,respectively).The ACC GABA+/W difference resulted of treatment in patient group was positively associated with the difference of working memory score and the difference of reasoning and problem-solving score(correlation coefficient and P value were r=0.58,P<0.05;r=0.66,P<0.05,respec-tively).Conclusion:The cognitive dysfunction of patients with major depression disorder may not be related to the degree of depression and anxiety.And improvement of cognitive function may be associated with increase of ACC GABA concentrations.
9.β-Ionone suppresses breast cancer cell proliferation through the NF-κB pathway
Guangqiang GAO ; Falin WANG ; Juan LI ; Hong TIAN ; Sijia GUO ; Xiaolan YU ; Tingting YANG ; Jiaren LIU
Practical Oncology Journal 2024;38(4):254-261
Objective This article aimed to explore the inhibitory effect of β-ionone(BI)on the proliferation of breast canc-er cells through the nuclear factor kappa-B(NF-κB)pathway and its possible mechanism.Methods The methylene blue assay and MTT assay were used to determine the viability of breast cancer cells.The malachite green phosphate assay was used to detect the ac-tivity of protein phosphatase 2A(PP2A).Western blot was used to detect the levels of phosphorylated P65(s534 and s311)(p-P65),PP2A(A,B and C),and phosphorylated ataxia telangiectasia mutant(p-ATM)(s1981)protein.Results BI could significant-ly inhibit the proliferation of human breast cancer BT549 cells and MCF-7 cells in a time-and dose-dependent manner,and the difference was statistically significant(P<0.01).After treated with BI,NF-κB activity was significantly inhibited in MCF-7 cells,as shown by a significant decrease in the level of phosphorylated P65(s311 and s534)protein and an increase in the level of PP2A pro-tein,and the difference was statistically significant(P<0.05).In addition,BI also significantly reduced the phosphorylation of P65 protein and ATM protein in MCF-7 cells by the PP2A inhibitor-okada acid(OA).Conclusion This study shows that BI inhibits the proliferation of breast cancer cells by inhibiting NF-κB activity,and its mechanism may be achieved by increasing PP2A activity to regulate the NF-κB pathway.
10.Correlation between lung allocation score and early death risk of patients with idiopathic pulmonary fibrosis after lung transplantation
Meirong GU ; Minqiang LIU ; Taoyin DAI ; Sijia GU ; Xiaoshan LI ; Bo XU ; Chunxiao HU ; Jingyu CHEN
Organ Transplantation 2024;15(2):251-256
Objective To analyze the correlation between the lung allocation score (LAS) and the risk of early death and complications in patients with idiopathic pulmonary fibrosis (IPF) after lung transplantation. Methods Clinical data of 275 patients with IPF were retrospectively analyzed. The correlation between LAS and the risk of early death in IPF patients after lung transplantation and the correlation between LAS and complications at postoperative 1 year was assessed by univariate and multivariate Cox regression analyses. Results Among 275 recipients, 62, 83, 95 and 108 cases died within postoperative 30, 90, 180 and 365 d, respectively. LAS was correlated with 30-, 90-, 180- and 365-d fatality of IPF patients (all P<0.05), whereas it was not correlated with the incidence of primary graft dysfunction (PGD) and acute kidney injury (AKI) at 365 d after lung transplantation (both P>0.05). Conclusions LAS is correlated with the risk of early death of IPF patients after lung transplantation. While, it is not correlated the incidence of PGD and AKI early after lung transplantation. Special attention should be paid to the effect of comprehensive factors upon PGD and AKI.


Result Analysis
Print
Save
E-mail