1.Naringenin: A potential therapeutic agent for modulating angiogenesis and immune response in hepatocellular carcinoma.
Wenmei WU ; Xiangyu QIU ; Xiaofan YE ; Zhiliang ZHANG ; Siguo XU ; Xiuqi YAO ; Yinyi DU ; Geyan WU ; Rongxin ZHANG ; Jinrong ZHU
Journal of Pharmaceutical Analysis 2025;15(9):101254-101254
Naringenin (4,5,7-trihydroxyflavonoid) is a naturally occurring bioflavonoid found in citrus fruits, which plays an important role in metabolic syndrome, neurological disorders, and cardiovascular diseases. However, the pharmacological mechanism and biological function of naringenin on anti-angiogenesis and anti-tumor immunity have not yet been elucidated. Our study firstly demonstrates that naringenin inhibits the growth of hepatocellular carcinoma (HCC) cells both in vivo and in vitro. Naringenin diminishes the ability of HCC cells to induce tube formation and migration of human umbilical vein endothelial cells (HUVECs) and suppresses neovascularization in chicken chorioallantoic membrane (CAM) assays. Meanwhile, in vivo results demonstrate that naringenin can significantly upregulate level of CD8+ T cells, subsequently increasing the level of immune-related cytokines in the tumor immune microenvironment. Mechanistically, we found that naringenin facilitate the K48-linked ubiquitination and subsequent protein degradation of vascular endothelial growth factor A (VEGFA) and mesenchymal-epithelial transition factor (c-Met), which reduces the expression of programmed death ligand 1 (PD-L1). Importantly, combination therapy naringenin with PD-L1 antibody or bevacizumab provided better therapeutic effects in liver cancer. Our study reveals that naringenin can effectively inhibit angiogenesis and anti-tumor immunity in liver cancer by degradation of VEGFA and c-Met in a K48-linked ubiquitination manner. This work enlightens the potential effect of naringenin as a promising therapeutic strategy against anti-angiogenesis and anti-tumor immunity in HCC.
2. A multicenter, retrospective study of pathogenic bacteria distribution and drug resistance in febrile neutropenic patients with hematological diseases in Shanghai
Jun ZHU ; Jiong HU ; Yuanfei MAO ; Fangyuan CHEN ; Jianyi ZHU ; Jumei SHI ; Dandan YU ; Siguo HAO ; Rong TAO ; Peng LIU ; Shiyang GU ; Jian HOU ; Haiyan HE ; Aibin LIANG ; Yi DING ; Ligen LIU ; Yinghua XIE ; Qi ZHU ; Yehua YU ; Yonghua YAO ; Wei CHEN ; Huili XU ; Xiuhua HAN ; Chun WANG
Chinese Journal of Hematology 2017;38(11):945-950
Objective:
To investigate the pathogen spectrum distribution and drug resistance of febrile neutropenic patients with hematological diseases in Shanghai.
Methods:
A retrospective study was conducted on the clinical isolates from the febrile neutropenic patients hospitalized in the departments of hematology in 12 general hospitals in Shanghai from January 2012 to December 2014. The drug susceptibility test was carried out by Kirby-Bauer method. WHONET 5.6 software was used to analyze pathogenic bacteria and drug susceptibility data.
Results:
A total of 1 260 clinical isolates were collected from the febrile neutropenic patients. Gram-positive bacteria accounted for 33.3% and Gram-negative bacteria accounted for 66.7%.
3.Deletion of marker gene in transgenic goat by Cre/LoxP system.
Chong LAN ; Lina REN ; Min WU ; Siguo LIU ; Guohui LIU ; Xujun XU ; Jianquan CHEN ; Hengdong MA ; Guoxiang CHENG
Chinese Journal of Biotechnology 2013;29(12):1847-1854
In producing transgenic livestock, selectable marker genes (SMGs) are usually used to screen transgenic cells from numerous normal cells. That results in SMGs integrating into the genome and transmitting to offspring. In fact, SMGs could dramatically affect gene regulation at integration sites and also make the safety evaluation of transgenic animals complicated. In order to determine the deletion time and methods in the process of producing transgenic goats, the feasibility of deleting SMGs was explored by Cre/LoxP before or after somatic cell cloning. In addition, we compared the efficiency of protein transduction with plasmids co-transduction. We could delete 43.9% SMGs after screening out the transgenic cell clones, but these cells could not be applied to somatic cells cloning because of serious aging after two gene modifications. The SMG-free cells suitable for nuclear transfer were accessible by using the cells of transgenic goats, but this approach was more time consuming. Finally, we found that the Cre plasmid could delete SMGs with an efficiency of 7.81%, but about 30% in SMG-free cells had sequences of Cre plasmid. Compared with Cre plasmid, the integration of new exogenous gene could be avoided by TAT-CRE protein transduction, and the deletion rate of TAT-CRE transduction was between 43.9 and 72.8%. Therefore, TAT-Cre transduction could be an effective method for deleting selectable marker genes.
Animals
;
Animals, Genetically Modified
;
genetics
;
Cloning, Organism
;
veterinary
;
Gene Knockout Techniques
;
Gene Targeting
;
methods
;
Genes, Reporter
;
Genetic Engineering
;
Genetic Vectors
;
genetics
;
Goats
;
genetics
;
Integrases
;
chemistry
;
metabolism
;
Recombination, Genetic
;
Transgenes
;
genetics

Result Analysis
Print
Save
E-mail