1.Precision therapy targeting CAMK2 to overcome resistance to EGFR inhibitors in FAT1 -mutated oral squamous cell carcinoma.
Yumeng LIN ; Yibo HUANG ; Bowen YANG ; You ZHANG ; Ning JI ; Jing LI ; Yu ZHOU ; Ying-Qiang SHEN ; Qianming CHEN
Chinese Medical Journal 2025;138(15):1853-1865
BACKGROUND:
Oral squamous cell carcinoma (OSCC) is a prevalent type of cancer with a high mortality rate in its late stages. One of the major challenges in OSCC treatment is the resistance to epidermal growth factor receptor (EGFR) inhibitors. Therefore, it is imperative to elucidate the mechanism underlying drug resistance and develop appropriate precision therapy strategies to enhance clinical efficacy.
METHODS:
To evaluate the efficacy of the combination of the Ca 2+ /calmodulin-dependent protein kinase II (CAMK2) inhibitor KN93 and EGFR inhibitors, we performed in vitro and in vivo experiments using two FAT atypical cadherin 1 ( FAT1 )-deficient (SCC9 and SCC25) and two FAT1 wild-type (SCC47 and HN12) OSCC cell lines. We assessed the effects of EGFR inhibitors (afatinib or cetuximab), KN93, or their combination on the malignant phenotype of OSCC in vivo and in vitro . The alterations in protein expression levels of members of the EGFR signaling pathway and SRY-box transcription factor 2 (SOX2) were analyzed. Changes in the yes-associated protein 1 (YAP1) protein were characterized. Moreover, we analyzed mitochondrial dysfunction. Besides, the effects of combination therapy on mitochondrial dynamics were also evaluated.
RESULTS:
OSCC with FAT1 mutations exhibited resistance to EGFR inhibitors treatment. The combination of KN93 and EGFR inhibitors significantly inhibited the proliferation, survival, and migration of FAT1 -mutated OSCC cells and suppressed tumor growth in vivo . Mechanistically, combination therapy enhanced the therapeutic sensitivity of FAT1 -mutated OSCC cells to EGFR inhibitors by modulating the EGFR pathway and downregulated tumor stemness-related proteins. Furthermore, combination therapy induced reactive oxygen species (ROS)-mediated mitochondrial dysfunction and disrupted mitochondrial dynamics, ultimately resulting in tumor suppression.
CONCLUSION
Combination therapy with EGFR inhibitors and KN93 could be a novel precision therapeutic strategy and a potential clinical solution for EGFR-resistant OSCC patients with FAT1 mutations.
Humans
;
ErbB Receptors/metabolism*
;
Mouth Neoplasms/metabolism*
;
Cell Line, Tumor
;
Animals
;
Drug Resistance, Neoplasm/genetics*
;
Cadherins/metabolism*
;
Carcinoma, Squamous Cell/metabolism*
;
Mice
;
Mutation/genetics*
;
Mice, Nude
;
Protein Kinase Inhibitors/therapeutic use*
;
Cetuximab/pharmacology*
;
Afatinib/therapeutic use*
;
Cell Proliferation/drug effects*
;
Signal Transduction/drug effects*
2.Effect of Huayu Tongluo moxibustion on learning-memory ability in rats with vascular dementia based on hippocampal Mst1/NF-κB p65 pathway.
Ping WANG ; Jun YANG ; Yu KONG ; Yating ZHANG ; Yinqiu FAN ; Haiping SHI ; Lanying LIU
Chinese Acupuncture & Moxibustion 2025;45(1):53-60
OBJECTIVE:
To observe the effects of Huayu Tongluo (transforming stasis and unblocking collaterals) moxibustion on learning-memory ability and hippocampal mammalian sterile 20-like kinase 1 (Mst1)/nuclear factor κB (NF-κB) p65 pathway related to inflammatory response in rats with vascular dementia (VD).
METHODS:
A total of 60 male Wistar rats of SPF grade were randomly divided into a sham operation group (12 rats) and a modeling group (48 rats). VD model was established by the method of modified bilateral common carotid artery permanent ligation in the modeling group. Thirty-six rats with successful modeling were randomly divided into a model group, a moxibustion group and a western medication group, with 12 rats in each group. Huayu Tongluo moxibustion was applied at "Dazhui" (GV14), "Baihui" (GV20) and "Shenting" (GV24) in the moxibustion group, 20 min each time, once a day, 7 day-intervention was as one course, and 1 day-interval was taken between two courses, for a total of 3 courses. In the western medication group, piracetam was given 0.72 mg/kg by intragastric administration, twice a day, the course of intervention was same as that of the moxibustion group. The learning-memory ability was detected by Morris water maze test; the morphology of hippocampal CA1 region was observed by HE staining; the mRNA expression of Mst1, M1 microglia markers CD86, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) was detected by real-time PCR; the levels of IL-6 and TNF-α in hippocampus were detected by ELISA; and the protein expression of Mst1 and NF-κB p65 in hippocampus was detected by Western blot in rats of each group.
RESULTS:
Compared with the sham operation group, the escape latency was prolonged in the model group (P<0.05); compared with the model group, the escape latency was shortened in the moxibustion group and the western medication group (P<0.05). The cells in the CA1 region of hippocampus were disordered, cell collapse and irregular nuclei could be observed in the model group; compared with the model group, the cell arrangement in the CA1 region of hippocampus was more regular, and the damage was improved in the moxibustion group and the western medication group. Compared with the sham operation group, the mRNA expression of Mst1, CD86, IL-6 and TNF-α, as well as the protein expression of Mst1, NF-κB p65 in hippocampus were increased in the model group (P<0.05). Compared with the model group, the mRNA expression of Mst1, CD86, IL-6 and TNF-α, as well as the protein expression of Mst1, NF-κB p65 in hippocampus were decreased in the moxibustion group and the western medication group (P<0.05). Compared with the sham operation group, the levels of IL-6 and TNF-α in hippocampus were increased in the model group (P<0.05). Compared with the model group, the levels of IL-6 and TNF-α in hippocampus were decreased in the moxibustion group and the western medication group (P<0.05).
CONCLUSION
Huayu Tongluo moxibustion can improve the learning-memory ability of VD rats, the mechanism may be related to regulating the activation of microglia through Mst1/NF-κB p65 pathway, reducing the release of pro-inflammatory factors i.e. IL-6 and TNF-α, so as to alleviating the damage of inflammatory factors in the hippocampus of VD rats.
Animals
;
Male
;
Rats
;
Moxibustion
;
Hippocampus/metabolism*
;
Rats, Wistar
;
Dementia, Vascular/genetics*
;
Memory/drug effects*
;
Humans
;
Transcription Factor RelA/genetics*
;
Learning
;
Protein Serine-Threonine Kinases/genetics*
;
Acupuncture Points
;
Interleukin-6/genetics*
;
Signal Transduction/drug effects*
;
Drugs, Chinese Herbal
3.Mechanism of Guben Jiannao Liquid on Alzheimer's disease by regulating autophagy based on LKB1/AMPK/mTOR pathway.
Jing-Fan ZHANG ; Qing-Hua LONG ; Chu-Hua ZENG ; Yi-Min CHEN ; Zhe-Yao XIE ; Yuan-Qin CAI ; Xi WANG
China Journal of Chinese Materia Medica 2025;50(2):293-300
This study explores the mechanism of Guben Jiannao Liquid on Alzheimer's disease(AD) by regulating autophagy based on the liver kinase B1(LKB1)/adenosine monophosphate-activated protein kinase(AMPK)/mammalian target of rapamycin(mTOR) pathway. Male SD rats were randomly divided into the blank group, model group, low-dose and high-dose groups of Guben Jiannao Liquid, and rapamycin group, with 10 rats in each group. Except for the blank group, all other groups of rats were injected bilaterally in the hippocampus with β-amyloid(Aβ)_(1-42) to establish the AD model. The low-dose(6.21 g·kg~(-1)) and high-dose(12.42 g·kg~(-1)) groups of Guben Jiannao Liquid and rapamycin group(1 mg·kg~(-1)) were given the corresponding drugs by gavage, and the blank and model groups were given an equal volume of saline by gavage for four weeks. Morris water maze was used to test the learning and memory ability of rats in each group; hematoxylin-eosin(HE) and Nissl staining were used to observe the morphological and quantitative changes of neurons and Nissl bodies in the CA1 region of rat hippocampus; immunohistochemistry was utilized to detect Aβ-positive cell expression in the CA1 region of rat hippocampus; transmission electron microscopy was employed to observe ultrastructural changes in rat hippocampal tissue, and Western blot was used to examine the protein expression levels of LKB1, p-AMPK/AMPK, p-mTOR/mTOR, Beclin1, p62, and LC3-Ⅱ in the hippocampal tissue of the rats. The results showed that compared with those in the blank group, rats in the model group had elevated evasion latency and decreased number of platform transversal and residence time in the platform quadrant. The number of neurons in the hippocampal area was reduced, and the morphology was impaired. The average integral optical density value of Aβ-positive cells was elevated; the expression levels of LKB1, p-AMPK/AMPK, Beclin1, and LC3-Ⅱ were decreased, and the expression levels of p-mTOR/mTOR and p62 were increased. Compared with those in the model group, rats in the low-dose and high-dose groups of Guben Jiannao Liquid had shorter evasion latency, higher number of platform transversal, longer residence time in the platform quadrant, increased number of neurons, decreased expression of Aβ-positive cells and average integral optical density values, and increased number of autophagic lysosomes in hippocampal tissue. The expression levels of LKB1, Beclin1, and LC3-Ⅱ were elevated in the hippocampus of rats in the low-dose group of Guben Jiannao Liquid. The expression levels of LKB1, p-AMPK/AMPK, Beclin1, and LC3-Ⅱ were elevated in the hippocampal tissue of rats in the high-dose group of Guben Jiannao Liquid, and the expression levels of p-mTOR/mTOR and p62 were decreased. The findings suggest that Guben Jiannao Liquid can improve cognitive impairment in AD rats, and its mechanism of action may be related to the activation of the LKB1/AMPK/mTOR signaling pathway and the up-regulation of autophagy level.
Animals
;
Alzheimer Disease/physiopathology*
;
Male
;
TOR Serine-Threonine Kinases/genetics*
;
Autophagy/drug effects*
;
Rats, Sprague-Dawley
;
Protein Serine-Threonine Kinases/genetics*
;
AMP-Activated Protein Kinases/genetics*
;
Rats
;
Drugs, Chinese Herbal/administration & dosage*
;
Signal Transduction/drug effects*
;
AMP-Activated Protein Kinase Kinases
;
Humans
;
Hippocampus/metabolism*
4.Mechanism of tannins from Galla chinensis cream in promoting skin wound healing in rats based on FAK/PI3K/Akt/mTOR signaling pathway.
Wen YI ; Zi-Yi YAN ; Meng-Qiong SHI ; Ying ZHANG ; Jie LIU ; Qian YI ; Hai-Ming TANG ; Yi-Wen LIU
China Journal of Chinese Materia Medica 2025;50(2):480-497
This study investigated the effects and action mechanism of tannins from Galla chinensis cream(TGCC) on the skin wound of rat tail. Male Sprague Dawley(SD) rats were randomly divided into a control group, model group, model+low-dose TGCC(50 mg per rat) group, model+high-dose TGCC group(100 mg per rat), and model+TGC+FAK inhibitor(Y15) cream(100 mg+10 mg per rat) group, with 10 rats in each group. After the rat tail skin injury model was successfully constructed, in the treatment group, corresponding drugs were applied to the wound surface, while in the control and model groups, the same amount of cream base as the TGCC group was applied by the same method. Then, sterile gauze was wrapped around the wound edge, and these operations were performed three times a day for 28 consecutive days. The wound healing status at the third, seventh, eleventh, fourteenth, twenty-first, and twenty-eighth days was recorded, and the wound healing rate and healing time were calculated. On the day after the last dose of medication, rat serum and tail skin wound tissue were collected for analyzing the activities of serum alanine aminotransferase(ALT), aspartate aminotransferase(AST), creatinine(CREA), urea, reactive oxygen species(ROS), interferon gamma(IFN-γ), interleukin(IL)-1β, IL-6, IL-4, IL-10, tumor necrosis factor(TNF)-α, as well as catalase(CAT), glutathione(GSH), lactate dehydrogenase(LDH), malondialdehyde(MDA), myeloperoxidase(MPO), superoxide dismutase(SOD), total antioxidant capacity(T-AOC), platelet endothelial cell adhesion molecule-1(CD31), and leukocyte differentiation antigen 34(CD34) in the wound tissue of rat tail skin. Hematoxylin-eosin, Masson, and sirius red staining were used to observe the morphological changes in the wound tissue of rat tail skin. The thickness of the epidermis, the number of fibroblasts and blood vessels, and the contents of collagen fibers, typeⅠ collagen(COLⅠ), and COLⅢ were calculated. The mRNA expressions of keratin 10(KRT10), KRT14, vascular endothelial growth factor(VEGF), fibroblast growth factor(FGF), epidermal growth factor(EGF), CD31, CD34, matrix metallopeptidase-2(MMP-2), MMP-9, COLⅠ, COLⅢ, desmin, fibroblast specific protein 1(FSP1), IFN-γ, IL-1β, TNF-α, IL-4, IL-6, and IL-10 in skin wound tissue were determined by quantitative real-time polymerase chain reaction(PCR). Western blot was utilized to detect the protein expressions of KRT10, KRT14, VEGF, FGF, EGF, MMP-2, MMP-9, COLⅠ, COLⅢ, desmin, FSP1, focal adhesion kinase(FAK), phosphorylated focal adhesion kinase(p-FAK), phosphatidylin-ositol-3-kinase(PI3K), phosphorylated phosphatidylin-ositol-3-kinase(p-PI3K), protein kinase B(Akt), phosphorylated protein kinase B(p-Akt), mammalian target of rapamycin(mTOR), and phosphorylated mammalian target of rapamycin(p-mTOR). The results manifest that TGCC can dramatically elevate the healing rate of rat tail wounds and shorten wound healing time. Besides, it can reduce serum ROS levels, the contents of MDA, MPO, and LDH in the rat skin wound tissue, as well as the serum IFN-γ, IL-1β, IL-6, and TNF-α levels and the mRNA expression levels of IFN-γ, IL-1β, IL-6, and TNF-α in the skin wound tissue. It can elevate the activities of CAT, GSH, SOD, and T-AOC in wound tissue, the IL-4 and IL-10 contents in serum, and the mRNA expressions of IL-4 and IL-10 in the wound tissue. In addition, TGGC can inhibit inflammatory cell infiltration and increase the epidermal thickness, counts of fibroblasts and blood vessels, and contents of collagen fibers, COLⅠ, and COLⅢ. Besides, TGCC can elevate the mRNA and protein expressions of epidermal differentiation markers(KRT10 and KRT14), endothelial cell markers(CD31 and CD34), angiogenesis and fibroblast proliferation, differentiation markers(VEGF, FGF, EGF, COLⅠ, COLⅢ, desmin, and FSP1), reduce the mRNA and protein expressions of gelatinases(MMP-2 and MMP-9), and increase protein expressions of p-FAK, p-PI3K, p-Akt, p-mTOR, as well as ratios of p-FAK/FAK, p-PI3K/PI3K, p-Akt/Akt, and p-mTOR/mTOR. These results suggest that TGCC can significantly facilitate skin wound healing, and its mechanism may be related to the activation of the FAK/PI3K/Akt/mTOR signaling pathway, inhibition of inflammatory cell infiltration in skin wound tissue, elevation of epidermal thickness, counts of fibroblasts and vessels, and contents of collagen fiber, COLⅠ, and COLⅢ, and reduction of MMP-2 and MMP-9 expressions, thus accelerating wound healing.
Animals
;
Male
;
Wound Healing/drug effects*
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
TOR Serine-Threonine Kinases/genetics*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Skin/metabolism*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Tannins/pharmacology*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
Focal Adhesion Kinase 1/genetics*
5.Huanglian Jiedu Decoction prevents and treats acute liver injury in septic mice via AMPK/SIRT1 autophagy pathway.
Rui-Zhu ZHAO ; Xin-Yue REN ; Yu-Hang WANG ; Ding-Xing FAN ; Shi-Lei LOU ; Hui YAN ; Cong SUN
China Journal of Chinese Materia Medica 2025;50(2):507-514
This study aims to explore the mechanism of Huanglian Jiedu Decoction(HJD) in treating acute liver injury(ALI) in the mouse model of sepsis induced by lipopolysaccharide(LPS). Fifty-four male C57BL/6 mice were randomized into six groups: blank group, model group, low-, medium-, and high-dose group HJD, and dexamethasone group. The mouse model of sepsis was established by intraperitoneal injection of LPS after 7 days of gavage with HJD, and dexamethasone(0.2 mL) was injected intraperitoneally 1.5 h after modeling. The murine sepsis score(MSS) was recorded 12 h after modeling. The levels of alanine aminotransferase(ALT) and aspartate aminotransferase(AST) in the liver tissue and tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6) in the serum were measured by ELISA. Hematoxylin-eosin(HE) staining was used to observe the pathological changes of the mouse liver. The content of light chain 3 of microtubule-associated protein 1(LC3) was detected by immunofluorescence, and that of sirtuin 1(SIRT1) was detected by immunohistochemistry. The mRNA levels of adenosine 5'-monophosphate-activated protein kinase(AMPK), LC3, and P62 were detected by RT-PCR. Western blot was employed to determine the protein levels of AMPK, p-AMPK, and SIRT1 in the liver tissue. The results showed that compared with model group, drug interventions decreased the MSS and liver injury indicators, lowered the levels of inflammatory cytokines, improved the liver tissue structure, upregulated the protein levels of of p-AMPK/AMPK and SIRT1 and the mRNA levels of AMPK and LC3, and downregulated the mRNA level of P62. To sum up, HJD can regulate the autophagy level and reduce inflammation to ameliorate acute liver injury in septic mice by activating the AMPK/SIRT1 autophagy pathway.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Sirtuin 1/genetics*
;
Male
;
Mice
;
Sepsis/metabolism*
;
Mice, Inbred C57BL
;
Autophagy/drug effects*
;
AMP-Activated Protein Kinases/genetics*
;
Liver/metabolism*
;
Humans
;
Signal Transduction/drug effects*
;
Disease Models, Animal
;
Tumor Necrosis Factor-alpha/genetics*
6.Effect of Duhuo Jisheng Decoction on knee osteoarthritis model rabbits through regulation of cell pyroptosis mediated by PI3K/Akt/mTOR signaling pathway.
Lin-Qin HE ; Peng-Fei LI ; Xiao-Dong LI ; Qi-Peng CHEN ; Zong-Han TANG ; Yu-Xin SONG ; Han-Bing SONG
China Journal of Chinese Materia Medica 2025;50(1):187-197
This study aimed to investigate the underlying mechanisms of Duhuo Jisheng Decoction(DJD) in the prevention and treatment of knee osteoarthritis(KOA). Forty SPF New Zealand rabbits were randomly divided using SPSS 26.0 software into five groups: blank group, model group, low-dose DJD group, high-dose DJD group, and high-dose DJD+phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/mammalian target of rapamycin(mTOR) signaling pathway activator group(high-dose DJD+740Y-P group), with eight rabbits in each group. Except for the blank group, the KOA model was established in the other groups using papain injection into the knee joint cavity combined with forced flexion of the knee joint. The day after modeling, the blank group and model group were given normal saline at 10 mL·kg~(-1) by gavage, the low-dose DJD group received DJD at 8.8 g·kg~(-1) by gavage, the high-dose DJD group received DJD at 35.2 g·kg~(-1) by gavage, and the high-dose DJD+740Y-P group received DJD at 35.2 g·kg~(-1) by gavage along with 740Y-P at 0.15 μmoL·kg~(-1) injected via the auricular vein. All groups received treatment continuously for four weeks. After modeling and intervention, behavioral observations were performed for all groups, and after the intervention, imaging assessments of the knee joints were conducted. Cartilage from the knee joints was collected, and gross morphological changes were observed. Pathological changes in cartilage tissue were examined using hematoxylin-eosin(HE) staining. The results of these observations were quantitatively evaluated using the Lequesne MG score, Kellgren-Lawrence(K-L) grading, Pelletier score, and Mankin score. ELISA was used to measure the levels of interleukin-1β(IL-1β), interleukin-18(IL-18), and matrix metalloproteinase 13(MMP13) in cartilage tissue. Real-time RT-PCR was used to detect the mRNA expression levels of PI3K, Akt, mTOR, Nod-like receptor protein 3(NLRP3), cysteine protease 1(caspase-1), and gasdermin D(GSDMD) in cartilage tissue. Western blot was employed to measure the protein expression levels of PI3K, Akt, mTOR, NLRP3, caspase-1, and GSDMD. The results showed that compared with the blank group, the model group exhibited significant knee joint degeneration, increased Lequesne MG score, K-L grading, Pelletier score, and Mankin score, elevated levels of IL-1β, IL-18, and MMP13 in cartilage tissue, activation of PI3K, Akt, and mTOR phosphorylation along with increased mRNA expression levels, and elevated protein and mRNA expression levels of NLRP3, caspase-1, and GSDMD. Compared with the model group, these indicators were reversed in both the low-dose and high-dose DJD groups, with the high-dose group showing greater decline degree than the low-dose DJD group. However, compared with the high-dose DJD group, the improvements in knee joint degeneration were less pronounced in the high-dose DJD+740Y-P group, with increased Lequesne MG score, K-L grading, Pelletier score, Mankin score, elevated levels of IL-1β, IL-18, and MMP13, activation of PI3K, Akt, and mTOR phosphorylation along with increased mRNA expression, and increased protein and mRNA expression levels of NLRP3, caspase-1, and GSDMD. In conclusion, DJD is effective and safe in the treatment of KOA, and its mechanism may be related to the inhibition of PI3K/Akt/mTOR signaling pathway-mediated pyroptosis in cartilage tissue, thereby improving knee joint bone structure, reducing the inflammatory response, and preventing cartilage matrix degradation.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Rabbits
;
TOR Serine-Threonine Kinases/genetics*
;
Osteoarthritis, Knee/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Signal Transduction/drug effects*
;
Male
;
Disease Models, Animal
;
Pyroptosis/drug effects*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Humans
;
Female
7.Network pharmacology and animal experiments reveal molecular mechanisms of Cordyceps sinensis in ameliorating heart aging and injury in mice by regulating Nrf2/HO-1/NF-κB pathway.
Si-Yi LIU ; Yue TU ; Wei-Ming HE ; Wen-Jie LIU ; Kai-Zhi WEN ; Cheng-Juan LI ; Chao HAN ; Xin-Yu LIANG
China Journal of Chinese Materia Medica 2025;50(4):1063-1074
This study aims to explore the effects and mechanisms of the traditional Chinese medicine Cordyceps sinensis(CS) in ameliorating heart aging and injury in mice based on animal experiments and network pharmacology. A mouse model of heart aging was established by continuously subcutaneous injection of D-galactose(D-gal). Thirty mice were randomly assigned into a normal group, a model group, a low-dose CS(CS-L) group, a high-dose CS(CS-H) group, and a vitamin E(VE) group. Mice in these groups were administrated with normal saline, different doses of CS suspension, or VE suspension via gavage daily. After 60 days of treatment with D-gal and various drugs, all mice were euthanized, and blood and heart tissue samples were collected for determination of the indicators related to heart aging and injury in mice. Experimental results showed that both high and low doses of CS and VE ameliorated the aging phenotype, improved the heart index and myocardial enzyme spectrum, restored the expression levels of proteins associated with cell cycle arrest and senescence-associated secretory phenotypes(SASP), and alleviated the fibrosis and histopathological changes of the heart tissue in model mice. From the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP),259 active ingredients of CS were retrieved. From Gene Cards and OMIM, 2 568 targets related to heart aging were identified, and 133common targets shared by CS and heart aging were obtained. The Gene Ontology(GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes( KEGG) pathway enrichment revealed that the pathways related to heart aging involved oxidative stress,apoptosis, inflammation-related signaling pathways, etc. The animal experiment results showed that both high and low doses of CS and VE ameliorated oxidative stress and apoptosis in the heart tissue to varying degrees in model mice. Additionally, CS-H and VE activated the nuclear factor E2-related factor 2(Nrf2)/heme oxygenase-1(HO-1) pathway and inhibited the expression of key proteins in the nuclear factor-κB(NF-κB) pathway in the heart tissue of model mice. In conclusion, this study demonstrated based on network pharmacology and animal experiments that CS may alleviate heart aging and injury in aging mice by reducing oxidative stress,apoptosis, and inflammation in the heart via the Nrf2/HO-1/NF-κB pathway.
Animals
;
Cordyceps/chemistry*
;
Mice
;
NF-E2-Related Factor 2/genetics*
;
NF-kappa B/genetics*
;
Aging/genetics*
;
Male
;
Signal Transduction/drug effects*
;
Network Pharmacology
;
Drugs, Chinese Herbal/pharmacology*
;
Heme Oxygenase-1/genetics*
;
Heart/drug effects*
;
Humans
;
Myocardium/metabolism*
;
Membrane Proteins/genetics*
8.Xinyang Tablets ameliorate ventricular remodeling in heart failure via FTO/m6A signaling pathway.
Dong-Hua LIU ; Zi-Ru LI ; Si-Jing LI ; Xing-Ling HE ; Xiao-Jiao ZHANG ; Shi-Hao NI ; Wen-Jie LONG ; Hui-Li LIAO ; Zhong-Qi YANG ; Xiao-Ming DONG
China Journal of Chinese Materia Medica 2025;50(4):1075-1086
The study was conducted to investigate the mechanism of Xinyang Tablets( XYP) in modulating the fat mass and obesity-associated protein(FTO)/N6-methyladenosine(m6A) signaling pathway to ameliorate ventricular remodeling in heart failure(HF). A mouse model of HF was established by transverse aortic constriction(TAC). Mice were randomized into sham, model, XYP(low, medium, and high doses), and positive control( perindopril) groups(n= 10). From day 3 post-surgery, mice were administrated with corresponding drugs by gavage for 6 consecutive weeks. Following the treatment, echocardiography was employed to evaluate the cardiac function, and RT-qPCR was employed to determine the relative m RNA levels of key markers, including atrial natriuretic peptide( ANP), B-type natriuretic peptide( BNP), β-myosin heavy chain(β-MHC), collagen type I alpha chain(Col1α), collagen type Ⅲ alpha chain(Col3α), alpha smooth muscle actin(α-SMA), and FTO. The cardiac tissue was stained with Masson's trichrome and wheat germ agglutinin(WGA) to reveal the pathological changes. Immunohistochemistry was employed to detect the expression levels of Col1α, Col3α, α-SMA, and FTO in the myocardial tissue. The m6A modification level in the myocardial tissue was measured by the m6A assay kit. An H9c2 cell model of cardiomyocyte injury was induced by angiotensin Ⅱ(AngⅡ), and small interfering RNA(siRNA) was employed to knock down FTO expression. RT-qPCR was conducted to assess the relative m RNA levels of FTO and other genes associated with cardiac remodeling. The m6A modification level was measured by the m6A assay kit, and Western blot was employed to determine the phosphorylated phosphatidylinositol 3-kinase(p-PI3K)/phosphatidylinositol 3-kinase(PI3K) and phosphorylated serine/threonine kinase(p-Akt)/serine/threonine kinase(Akt) ratios in cardiomyocytes. The results of animal experiments showed that the XYP treatment significantly improved the cardiac function, reduced fibrosis, up-regulated the m RNA and protein levels of FTO, and lowered the m6A modification level compared with the model group. The results of cell experiments showed that the XYP-containing serum markedly up-regulated the m RNA level of FTO while decreasing the m6A modification level and the p-PI3K/PI3K and p-Akt/Akt ratios in cardiomyocytes. Furthermore, FTO knockdown reversed the protective effects of XYP-containing serum on Ang Ⅱ-induced cardiomyocyte hypertrophy. In conclusion, XYP may ameliorate ventricular remodeling by regulating the FTO/m6A axis, thereby inhibiting the activation of the PI3K/Akt signaling pathway.
Animals
;
Ventricular Remodeling/drug effects*
;
Heart Failure/physiopathology*
;
Signal Transduction/drug effects*
;
Mice
;
Male
;
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice, Inbred C57BL
;
Humans
;
Adenosine/analogs & derivatives*
;
Myocytes, Cardiac/metabolism*
;
Disease Models, Animal
9.Verification of resveratrol ameliorating vascular endothelial damage in sepsis-associated encephalopathy through HIF-1α pathway based on network pharmacology and experiment.
Rong LI ; Yue WU ; Wen-Xuan ZHU ; Meng QIN ; Si-Yu SUN ; Li-Ya WANG ; Mei-Hui TIAN ; Ying YU
China Journal of Chinese Materia Medica 2025;50(4):1087-1097
This study aims to investigate the mechanism by which resveratrol(RES) alleviates cerebral vascular endothelial damage in sepsis-associated encephalopathy(SAE) through network pharmacology and animal experiments. By using network pharmacology, the study identified common targets and genes associated with RES and SAE and constructed a protein-protein interaction( PPI) network. Gene Ontology(GO) analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis were performed to pinpoint key signaling pathways, followed by molecular docking validation. In the animal experiments, a cecum ligation and puncture(CLP) method was employed to induce SAE in mice. The mice were randomly assigned to the sham group, CLP group, and medium-dose and high-dose groups of RES. The sham group underwent open surgery without CLP, and the CLP group received an intraperitoneal injection of 0. 9% sodium chloride solution after surgery. The medium-dose and high-dose groups of RES were injected intraperitoneally with 40 mg·kg-1 and 60 mg·kg~(-1) of RES after modeling, respectively, and samples were collected 12 hours later. Neurological function scores were assessed, and the wet-dry weight ratio of brain tissue was detected. Serum superoxide dismutase(SOD), catalase( CAT) activity, and malondialdehyde( MDA) content were measured by oxidative stress kit. Histopathological changes in brain tissue were examined using hematoxylin-eosin(HE) staining. Transmission electron microscopy was employed to evaluate tight cell junctions and mitochondrial ultrastructure changes in cerebral vascular endothelium. Western blot analysis was performed to detect the expression of zonula occludens1( ZO-1), occludin, claudins-5, optic atrophy 1( OPA1), mitofusin 2(Mfn2), dynamin-related protein 1(Drp1), fission 1(Fis1), and hypoxia-inducible factor-1α(HIF-1α). Network pharmacology identified 76 intersecting targets for RES and SAE, with the top five core targets being EGFR, PTGS2, ESR1, HIF-1α, and APP. GO enrichment analysis showed that RES participated in the SAE mechanism through oxidative stress reaction. KEGG enrichment analysis indicated that RES participated in SAE therapy through HIF-1α, Rap1, and other signaling pathways. Molecular docking results showed favorable docking activity between RES and key targets such as HIF-1α. Animal experiment results demonstrated that compared to the sham group, the CLP group exhibited reduced nervous reflexes, decreased water content in brain tissue, as well as serum SOD and CAT activity, and increased MDA content. In addition, the CLP group exhibited disrupted tight junctions in cerebral vascular endothelium and abnormal mitochondrial morphology. The protein expression levels of Drp1, Fis1, and HIF-1α in brain tissue were increased, while those of ZO-1, occludin, claudin-5, Mfn2, and OPA1 were decreased. In contrast, the medium-dose and high-dose groups of RES showed improved neurological function, increased water content in brain tissue and SOD and CAT activity, and decreased MDA content. Cell morphology in brain tissue, tight junctions between endothelial cells, and mitochondrial structure were improved. The protein expressions of Drp1, Fis1, and HIF-1α were decreased, while those of ZO-1, occludin, claudin-5, Mfn2, and OPA1 were increased. This study suggested that RES could ameliorate cerebrovascular endothelial barrier function and maintain mitochondrial homeostasis by inhibiting oxidative stress after SAE damage, potentially through modulation of the HIF-1α signaling pathway.
Animals
;
Mice
;
Network Pharmacology
;
Resveratrol/administration & dosage*
;
Male
;
Sepsis-Associated Encephalopathy/genetics*
;
Signal Transduction/drug effects*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Endothelium, Vascular/metabolism*
;
Molecular Docking Simulation
;
Protein Interaction Maps/drug effects*
;
Humans
;
Sepsis/complications*
;
Oxidative Stress/drug effects*
10.Yougui Pills inhibit oxidative stress-induced damage of granulosa cells by regulating Keap1/Nrf2 signaling pathway via Serpina3k.
Bei-Bei JIAO ; Tian LI ; Bei-Bei ZHOU ; Si CHEN ; Yue CHEN ; Jian ZHANG ; Pei-Juan WANG
China Journal of Chinese Materia Medica 2025;50(4):1111-1120
To investigate the effects and mechanisms of Yougui Pills(YGP) on oxidative damage induced by hydrogen peroxide(H_2O_2) in human ovarian granulosa cells(KGN). The components in serum with low-and high-doses of YGP were analyzed and compared through ultra-high performance liquid chromatography-quadrupole electrostatic field orbitrap mass spectrometry(UHPLC-QEMS), and selected the serum containing YGP high-dose group to follow-up experiments. To stimulated KGN with 200 μmol·L~(-1) H_2O_2to establish an oxidative damage model, which was divided into normal group, model group, low-, medium-, and high-dose of YGP groups, and the efficacy was further verified on the basis of silencing or overexpressing serine protease inhibitor(Serpina3k), further validating the efficacy based on the silencing or overexpression of Serpina3k. TUNEL staining was used to detect cell apoptosis,enzyme-linked immunosorbent assay(ELISA) was employed to measure the secretion levels of estradiol(E_2) and 17β-E_2 in KGN, and Western blot was utilized to assess the expression of Serpina3k and proteins related to the Keap1/Nrf2 signaling pathway. The results show that compared to the model group, each dose group of YGP not only significantly reduces granulocyte apoptosis and upregulates the secretion levels of E_2 and 17β-E_2, but also significantly upregulates Serpina3k and Nrf2 pathway. Further research has found that overexpression of Serpina3k not only enhances the therapeutic effect of YGP but also increases the expression of Nrf2 and inhibits the expression of Keap1. Conversely, interfering with Serpina3k partially reverses the therapeutic effect of YGP, while also partially. The results indicate that the mechanism by which YGP improves oxidative stress in KGN may be related to its upregulation of Serpina3k expression, which affects the conduction of the Keap1/Nrf2 signaling pathway. This study reveals the mechanism by which YGP protects granular cells, providing a certain theoretical basis for its clinical application.
NF-E2-Related Factor 2/genetics*
;
Kelch-Like ECH-Associated Protein 1/genetics*
;
Humans
;
Female
;
Signal Transduction/drug effects*
;
Oxidative Stress/drug effects*
;
Granulosa Cells/cytology*
;
Drugs, Chinese Herbal/pharmacology*
;
Apoptosis/drug effects*
;
Serpins/genetics*

Result Analysis
Print
Save
E-mail