1.Gene Expression Alteration by Non-thermal Plasma-Activated Media Treatment in Radioresistant Head and Neck Squamous Cell Carcinoma
Sicong ZHENG ; Yudan PIAO ; Seung-Nam JUNG ; Chan OH ; Mi Ae LIM ; QuocKhanh NGUYEN ; Shan SHEN ; Se-Hee PARK ; Shengzhe CUI ; Shuyu PIAO ; Young Il KIM ; Ji Won KIM ; Ho-Ryun WON ; Jae Won CHANG ; Yujuan SHAN ; Lihua LIU ; Bon Seok KOO
Clinical and Experimental Otorhinolaryngology 2025;18(1):73-87
Objectives:
. Head and neck squamous cell carcinoma (HNSCC) exhibits high recurrence rates, particularly in cases of radioresistant HNSCC (RR-HNSCC). Non-thermal plasma (NTP) therapy effectively suppresses the progression of HNSCC. However, the therapeutic mechanisms of NTP therapy in treating RR-HNSCC are not well understood. In this study, we explored the regulatory role of NTP in the RR-HNSCC signaling pathway and identified its signature genes.
Methods:
. After constructing two RR-HNSCC cell lines, we prepared cell lysates from cells treated or not treated with NTP-activated media (NTPAM) and performed RNA sequencing to determine their mRNA expression profiles. Based on the RNA sequencing results, we identified differentially expressed genes (DEGs), followed by a bioinformatics analysis to identify candidate molecules potentially associated with NTPAM therapy for RR-HNSCC.
Results:
. NTPAM reduced RR-HNSCC cell viability in vitro. RNA sequencing results indicated that NTPAM treatment activated the reactive oxygen species (ROS) pathway and induced ferroptosis in RR-HNSCC cell lines. Among the 1,924 genes correlated with radiation treatment, eight showed statistical significance in both the cell lines and The Cancer Genome Atlas (TCGA) cohort. Only five genes—ABCC3, DUSP16, PDGFB, RAF1, and THBS1—showed consistent results between the NTPAM data sequencing and TCGA data. LASSO regression analysis revealed that five genes were associated with cancer prognosis, with a hazard ratio of 2.26. In RR-HNSCC cells, NTPAM affected DUSP16, PDGFB, and THBS1 as activated markers within 6 hours, and this effect persisted for 12 hours. Furthermore, enrichment analysis indicated that these three DEGs were associated with the extracellular matrix, transforming growth factor-beta, phosphoinositide 3-kinase/protein kinase B, and mesenchymal-epithelial transition factor pathways.
Conclusion
. NTPAM therapy exerts cytotoxic effects in RR-HNSCC cell lines by inducing specific ROS-mediated ferroptosis. DUSP16, PDGFB, and THBS1 were identified as crucial targets for reversing the radiation resistance induced by NTPAM therapy, providing insights into the mechanisms and clinical applications of NTPAM treatment in RR-HNSCC.
2.Gene Expression Alteration by Non-thermal Plasma-Activated Media Treatment in Radioresistant Head and Neck Squamous Cell Carcinoma
Sicong ZHENG ; Yudan PIAO ; Seung-Nam JUNG ; Chan OH ; Mi Ae LIM ; QuocKhanh NGUYEN ; Shan SHEN ; Se-Hee PARK ; Shengzhe CUI ; Shuyu PIAO ; Young Il KIM ; Ji Won KIM ; Ho-Ryun WON ; Jae Won CHANG ; Yujuan SHAN ; Lihua LIU ; Bon Seok KOO
Clinical and Experimental Otorhinolaryngology 2025;18(1):73-87
Objectives:
. Head and neck squamous cell carcinoma (HNSCC) exhibits high recurrence rates, particularly in cases of radioresistant HNSCC (RR-HNSCC). Non-thermal plasma (NTP) therapy effectively suppresses the progression of HNSCC. However, the therapeutic mechanisms of NTP therapy in treating RR-HNSCC are not well understood. In this study, we explored the regulatory role of NTP in the RR-HNSCC signaling pathway and identified its signature genes.
Methods:
. After constructing two RR-HNSCC cell lines, we prepared cell lysates from cells treated or not treated with NTP-activated media (NTPAM) and performed RNA sequencing to determine their mRNA expression profiles. Based on the RNA sequencing results, we identified differentially expressed genes (DEGs), followed by a bioinformatics analysis to identify candidate molecules potentially associated with NTPAM therapy for RR-HNSCC.
Results:
. NTPAM reduced RR-HNSCC cell viability in vitro. RNA sequencing results indicated that NTPAM treatment activated the reactive oxygen species (ROS) pathway and induced ferroptosis in RR-HNSCC cell lines. Among the 1,924 genes correlated with radiation treatment, eight showed statistical significance in both the cell lines and The Cancer Genome Atlas (TCGA) cohort. Only five genes—ABCC3, DUSP16, PDGFB, RAF1, and THBS1—showed consistent results between the NTPAM data sequencing and TCGA data. LASSO regression analysis revealed that five genes were associated with cancer prognosis, with a hazard ratio of 2.26. In RR-HNSCC cells, NTPAM affected DUSP16, PDGFB, and THBS1 as activated markers within 6 hours, and this effect persisted for 12 hours. Furthermore, enrichment analysis indicated that these three DEGs were associated with the extracellular matrix, transforming growth factor-beta, phosphoinositide 3-kinase/protein kinase B, and mesenchymal-epithelial transition factor pathways.
Conclusion
. NTPAM therapy exerts cytotoxic effects in RR-HNSCC cell lines by inducing specific ROS-mediated ferroptosis. DUSP16, PDGFB, and THBS1 were identified as crucial targets for reversing the radiation resistance induced by NTPAM therapy, providing insights into the mechanisms and clinical applications of NTPAM treatment in RR-HNSCC.
3.Gene Expression Alteration by Non-thermal Plasma-Activated Media Treatment in Radioresistant Head and Neck Squamous Cell Carcinoma
Sicong ZHENG ; Yudan PIAO ; Seung-Nam JUNG ; Chan OH ; Mi Ae LIM ; QuocKhanh NGUYEN ; Shan SHEN ; Se-Hee PARK ; Shengzhe CUI ; Shuyu PIAO ; Young Il KIM ; Ji Won KIM ; Ho-Ryun WON ; Jae Won CHANG ; Yujuan SHAN ; Lihua LIU ; Bon Seok KOO
Clinical and Experimental Otorhinolaryngology 2025;18(1):73-87
Objectives:
. Head and neck squamous cell carcinoma (HNSCC) exhibits high recurrence rates, particularly in cases of radioresistant HNSCC (RR-HNSCC). Non-thermal plasma (NTP) therapy effectively suppresses the progression of HNSCC. However, the therapeutic mechanisms of NTP therapy in treating RR-HNSCC are not well understood. In this study, we explored the regulatory role of NTP in the RR-HNSCC signaling pathway and identified its signature genes.
Methods:
. After constructing two RR-HNSCC cell lines, we prepared cell lysates from cells treated or not treated with NTP-activated media (NTPAM) and performed RNA sequencing to determine their mRNA expression profiles. Based on the RNA sequencing results, we identified differentially expressed genes (DEGs), followed by a bioinformatics analysis to identify candidate molecules potentially associated with NTPAM therapy for RR-HNSCC.
Results:
. NTPAM reduced RR-HNSCC cell viability in vitro. RNA sequencing results indicated that NTPAM treatment activated the reactive oxygen species (ROS) pathway and induced ferroptosis in RR-HNSCC cell lines. Among the 1,924 genes correlated with radiation treatment, eight showed statistical significance in both the cell lines and The Cancer Genome Atlas (TCGA) cohort. Only five genes—ABCC3, DUSP16, PDGFB, RAF1, and THBS1—showed consistent results between the NTPAM data sequencing and TCGA data. LASSO regression analysis revealed that five genes were associated with cancer prognosis, with a hazard ratio of 2.26. In RR-HNSCC cells, NTPAM affected DUSP16, PDGFB, and THBS1 as activated markers within 6 hours, and this effect persisted for 12 hours. Furthermore, enrichment analysis indicated that these three DEGs were associated with the extracellular matrix, transforming growth factor-beta, phosphoinositide 3-kinase/protein kinase B, and mesenchymal-epithelial transition factor pathways.
Conclusion
. NTPAM therapy exerts cytotoxic effects in RR-HNSCC cell lines by inducing specific ROS-mediated ferroptosis. DUSP16, PDGFB, and THBS1 were identified as crucial targets for reversing the radiation resistance induced by NTPAM therapy, providing insights into the mechanisms and clinical applications of NTPAM treatment in RR-HNSCC.
4.Structure-activity Omics on Anti-inflammatory and Analgesic Effect of Cyperi Rhizoma in Qizhi Weitong Granules
Ying ZHENG ; Sicong LIU ; Xi LUO ; Bing QI ; Shuai WANG ; Yongrui BAO ; Tianjiao LI ; Liang WANG ; Dong YAO ; Xiansheng MENG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(21):153-160
ObjectiveTo elucidate the pharmacodynamic substances responsible for the anti-inflammatory and analgesic effects of Cyperi Rhizoma by structure-activity omics. MethodOn the basis of the previous in vitro efficacy study by our research group, this study explored the in vivo efficacy of the flavonoids in Cyperi Rhizoma. The flavonoids in Cyperi Rhizoma and their targets were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), PharmMapper, Swiss TargetPrediction, and available articles. The targets of the anti-inflammatory and analgesic effects were collected from DisGeNET and Online Mendelian Inheritance in Man (OMIM). The common targets shared by flavonoids and the effects were selected as the direct targets of flavonoids endowing Cyperi Rhizoma with anti-inflammatory and analgesic effects, and protein-protein interaction (PPI) network of the core targets was constructed. The method of structure-activity omics was employed to correlate the structure and efficacy of one or more classes of chemical components in Cyperi Rhizoma with the targets as a bridge. The components were classified according to structure. Molecular docking of components to core targets was carried out via SYBYL-X 2.1.1, PyMol, and Discovery Studio 4.5 visualizer. Two targets with the highest binding affinity were selected to explore the relationship between compound structures and targets. ResultThe flavonoids in Cyperi Rhizoma exerted anti-inflammatory and analgesic effects on the mouse model of pain induced by formaldehyde. Eighteen components and 115 direct targets were screened out, and the core targets with high activities were protein kinase B1 (Akt1), interleukin-1β (IL-1β), cellular tumor antigen p53 (TP53), prostaglandin-endoperoxide synthase 2 (PTGS2), and matrix metalloproteinase-9 (MMP-9). According to the structures, the flavonoids in Cyperi Rhizoma were classified into bioflavonoids, flavonols, flavones, and flavanes. The molecular docking results showed that flavonoids of Cyperi Rhizoma had the highest binding affinity to TP53 and PTGS2. The results of structure-activity omics showed that bioflavonoids represented the best binding structure to the targets, while their polyhydroxyl etherification resulted in a significant decrease in the binding affinity to PTGS2. Glycosides had higher binding affinity to PTGS2. The introduction of the long-chain hydrocarbon group to the A ring of flavonols facilitated the binding to TP53, while the change of B ring substituents was not the main factor affecting the binding affinity. The 3,4-dihydroxyl flavane outperformed 3-hydroxyl flavane in the binding to TP53, while the two compounds showed similar binding affinity to PTGS2. ConclusionThe method of structure-activity omics was used to analyze the material basis for the anti-inflammatory and analgesic effects of flavonoids in Cyperi Rhizoma. Structure-activity omics provides new ideas for revealing the pharmacodynamic substances of traditional Chinese medicine.
5.Structure-activity Omics on Anti-inflammatory and Analgesic Effect of Glycyrrhizae Radix et Rhizoma in Qizhiweitong Granules
Ying MENG ; Ying ZHENG ; Xinpeng QIN ; Sicong LIU ; Tianjiao LI ; Yongrui BAO ; Shuai WANG ; Liang WANG ; Honghong JIANG ; Xiansheng MENG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(21):161-168
ObjectiveTo reveal the pharmacodynamic substances for the anti-inflammatory and analgesic effects of Glycyrrhizae Radix et Rhizoma by structure-activity omics. MethodOn the basis of the previous study about the screening of active components in vitro, this study explored the effects of flavonoids in Glycyrrhizae Radix et Rhizoma in vivo. The flavonoids in Glycyrrhizae Radix et Rhizoma and their direct targets for the anti-inflammatory and analgesic effects were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), PharmMapper, Swiss TargetPrediction, DisGeNET, and Online Mendelian Inheritance in Man (OMIM). STRING and Cytoscape 3.7.2 were employed to establish the protein-protein interaction (PPI) network of key targets. Molecular docking was performed to simulate the binding of five targets with high degrees to flavonoids in Glycyrrhizae Radix et Rhizoma, on the basis of which the key core targets were selected. The targets were used as a bridge to correlate the structures and effects of one or more classes of chemical components in Glycyrrhizae Radix et Rhizoma. According to the binding affinity between flavonoids with different structures in Glycyrrhizae Radix et Rhizoma and targets, the relationships between compound structures and core targets were discussed. ResultThe flavonoids in Glycyrrhizae Radix et Rhizoma reduced the content of prostaglandin E2 (PGE2) in the rat model of pain induced by formalin, demonstrating definite anti-inflammatory and analgesic effects. Sixty active compounds (flavonoids) with anti-inflammatory and analgesic effects of Glycyrrhizae Radix et Rhizoma were obtained. With the total score as the standard, prostaglandin-endoperoxide synthase 2 (PTGS2) and mitogen-activated protein kinase 3 (MAPK3) were selected as the key core targets of Glycyrrhizae Radix et Rhizoma for the anti-inflammatory and analgesic effects. Except that flavones showed selectivity of binding to MAPK3, the other flavonoids of Glycyrrhizae Radix et Rhizoma showed strong binding to PTGS2 and MAPK3, and the structures containing glycoside fragments showed stronger binding affinity to the targets. The introduction of chain olefins in the ring of chalcones facilitated the binding to the targets. The isopentenyl fragment in flavonols may cause the difference in binding affinity. The parallel combination of a ring into pyran ring in flavanes was not conducive to the binding to the target. The electric charge, liposolubility, and steric hindrance of the substituent group on the B ring of isoflavones directly affected the binding affinity. ConclusionThis study adopts structure-activity omics to analyze the material basis for the anti-inflammatory and analgesic effects of Glycyrrhizae Radix et Rhizoma. Structure-activity omics provides new ideas and methods for predicting the pharmacodynamic substances of traditional Chinese medicine.
6.Analysis of the efficacy of adjustable pericardial soft annulus plasty in the treatment of functional tricuspid regurgitation secondary to rheumatic heart disease
Sicong LI ; Xiaomao LONG ; Wei JIANG ; Kequan WEI ; Ze ZHANG ; Hui CHEN ; Songtao LIU ; Xiaohui GUAN
Chinese Journal of Thoracic and Cardiovascular Surgery 2024;40(2):65-71
Objective:To compare the surgical efficacy of pericardial soft ring tricuspid valvuloplasty with DeVega and artificial valvuloplasty.Methods:227 patients undergoing tricuspid valvuloplasty due to rheumatic heart disease complicated with functional tricuspid valve insufficiency were retrospectively analyzed and divided into 3 groups according to tricuspid valvuloplasty dynamic cohort(pericardial ring group, 89 cases; the artificial flap ring group, 61 cases, and the DeVega group, 77 cases) were matched 1∶1 for propensity score(match A: pericardial ring group and artificial flap ring group; match B: pericardial ring group and DeVega group), the successful matching was included in follow-up and data collection, and cases with incomplete case data during follow-up were removed from the study cohort in pairs according to matching conditions. The results of follow-up 1 month, 6 months and 24 months after surgery were compared.Results:1 month after operation: the tricuspid valve regurgitant in all groups was significantly reduced or even disappeared compared with that before operation, and the right atrium and right ventricle were also smaller than that before operation, with statistical significance( P<0.05). 6 months after surgery: There was no statistical significance in the area of tricuspid regurgitation and right atrial/indoor diameter between all groups compared with the results one month after surgery( P>0.05), and there was no statistical significance in the recurrence rate of tricuspid regurgitation between all groups( P>0.05). 24 months after surgery: There were no significant differences in the recurrence rate of tricuspid regurgitation, area of tricuspid regurgitation and right atrial/indoor diameter between the two groups in matching A( P>0.05). There was no statistical significance in the right atrial/indoor diameter between the matched pericardial ring group and the Devega group, but the tricuspid valve regurgentation area of the Devega group at 24 months after surgery was higher than that of the Devega group at 1 month after surgery, and the difference was statistically significant( P<0.05). The regurgitation area and recurrence rate of tricuspid valve were significantly higher than those of pericardium-TVP group( P<0.05). Conclusion:Pericardial soft ring tricuspid valvuloplasty can effectively correct functional tricuspid valvuloplasty and reverse right heart remodeling, which is an effective tricuspid valvuloplasty.
7.Structure-activity Omics of Traditional Chinese Medicine: A Case Study of Anti-inflammatory and Analgesic Effect of Qizhi Weitong Granules
Xiansheng MENG ; Ying ZHENG ; Ying MENG ; Bing QI ; Sicong LIU ; Xi LUO ; Xinpeng QIN ; Yongrui BAO ; Shuai WANG ; Tianjiao LI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(15):129-135
The complex chemical composition and limited research ideas of traditional Chinese medicine (TCM) have led to the unclear material basis and mechanism of the medicinal effects, which is a common problem hindering the modernization of TCM in China. The introduction of computer virtual technology has provided a new perspective for TCM research. In this study, we established the research method of structure-activity omics to study the relationships between the structures and effects of different compounds in TCM based on the chemical structures of TCM components and to analyze and predict the material basis and multitarget synergistic mechanism of TCM. Furthermore, a structure-activity omics study was carried out with the anti-inflammatory and analgesic effects of Qizhi Weitong granules as an example. This study provides support for screening the pharmacodynamic components and analyzing the active ingredients of TCM and gives insights into the research on the material basis and mechanism of compound efficacy and the development of lead compounds of TCM, thus promoting the modern research and the innovative development of TCM.
8.Structure-activity Omics of Anti-inflammatory and Analgesic Effect of Corydalis Rhizoma in Qizhi Weitong Granules
Xinpeng QIN ; Ying MENG ; Sicong LIU ; Ying ZHENG ; Yongrui BAO ; Shuai WANG ; Tianjiao LI ; Ling HAN ; Wei ZOU ; Xiansheng MENG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(15):136-145
ObjectiveTo explain the anti-inflammatory and analgesic effects of Corydalis Rhizoma by the means of structure-activity omics. MethodOn the basis of the previous in vitro screening study, we studied the in vivo efficacy of the alkaloids in Corydalis Rhizoma. With the targets as a bridge, the structures of chemical components in Corydalis Rhizoma were connected with the efficacy. The molecular docking of the alkaloids in Corydalis Rhizoma with the targets of inflammation and pain was carried out. According to the docking scores and the differences in the structural nucleus of Corydalis Rhizoma alkaloids, a study of structure-activity omics was carried out to summarize the rules of their connection. ResultThe alkaloids in Corydalis Rhizoma had good anti-inflammatory and analgesic effects in vivo, involving 53 chemical components and 73 targets. There were 3 074 targets associated with inflammation and pain, and 42 targets of direct action were shared by the chemical components and the disease. The protein-protein interaction (PPI) and molecular docking analysis predicted that the main active components of Corydalis Rhizoma were tetrahydropalmatine and palmatine, and the core targets were prostaglandin endoperoxide synthase 2 (PTGS2), glutamate receptor metabotropic 5 (GRM5), estrogen receptor 1 (ESR1), solute carrier family 6 member 4 (SLC6A4), and fusion oncoproteins (FOS). According to the differences of mother nucleus, the 53 alkaloid components of Corydalis Rhizoma were classified into 8 categories, including protoberberine, berberine, and aporphine, which had high binding affinities with PTGS2, GRM5 and other targets. The relationship between the structures of Corydalis Rhizoma alkaloids and docking scores in each group showed the same law. In protoberberine, appropriate substituents with hydroxyl, alkoxy or methyl groups on the A and D rings of the parent ring were conducive to enhancing the binding activities with the two targets. In berberine, the structure containing a methyl group on position 13 had strong binding affinities with the two targets. It is hypothesized that the methyl fragment changes the binding mode between the component structure and amino acid residues, which greatly improves the binding affinity. ConclusionThis study employs the method of structure-activity omics to analyze the material basis for the anti-inflammatory and analgesic effects of alkaloids in Corydalis Rhizoma, and the structure-activity omics provides new ideas for revealing the pharmacodynamic substances of traditional Chinese medicine.
9.Structure-activity Omics on Anti-inflammatory and Analgesic Effect of Aurantii Fructus in Qizhi Weitong Granules
Sicong LIU ; Xinpeng QIN ; Bing QI ; Xi LUO ; Tianjiao LI ; Yongrui BAO ; Shuai WANG ; Ling HAN ; Xiansheng MENG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(15):154-161
ObjectiveTo explain the pharmacodynamic substances of Aurantii Fructus flavonoids that exert anti-inflammatory and analgesic effects using a structure-activity omics approach. MethodOn the basis of the previous in vitro pharmacological screening conducted by the research team, an in vivo pharmacological study of Aurantii Fructus flavonoids was carried out. Core targets of the anti-inflammatory and analgesic active components of flavonoids of Aurantii Fructus were identified using various network databases, including the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), the Online Mendelian Inheritance in Man (OMIM), and the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). Computer-aided virtual screening technology was used to dock different types of Aurantii Fructus flavonoids with core targets. The key core targets with high binding activity were selected based on the comprehensive scores of each target and the active structures. Using these targets as bridges, the structures of one or more types of chemical components in Aurantii Fructus were closely linked to pharmacological effects. The structure-activity relationship between the clear pharmacodynamic compounds and their effects was explored through the binding patterns of various structures with pharmacodynamic targets. ResultAurantii Fructus flavonoids demonstrated significant anti-inflammatory and analgesic effects on dextran sulfate sodium (DSS)-induced colitis in mice, which could improve symptoms and significantly reduce the levels of inflammatory factors interleukin-6 (IL-6) and interleukin-1β (IL-1β)(P<0.05). Twelve active components of Aurantii Fructus flavonoids were identified and categorized into nine dihydroflavonoids and three flavonoids based on their structures of the parent nuclei. Through Venn analysis, 167 anti-inflammatory and analgesic targets for Aurantii Fructus were identified. Based on degree value and molecular docking comprehensive scores, prostaglandin-endoperoxide synthase 2(PTGS2) and mitogen-activated protein kinase 3(MAPK3) were selected for further structural analysis. Structural analysis revealed that components containing glycoside structures exhibited higher binding activity with anti-inflammatory and analgesic targets. ConclusionThis study utilized a structure-activity omics approach based on in vivo pharmacodynamic experiments to analyze the material basis of the anti-inflammatory and analgesic effects of Aurantii Fructus flavonoids. The structure-activity omics approach provides new ideas and methods for elucidating the pharmacodynamic substances of Chinese medicine.
10.CT radiomics combined with clinical and CT features for predicting TNM stage of thymic epithelial tumor
Jin LIU ; Ping YIN ; Sicong WANG ; Nan HONG
Chinese Journal of Interventional Imaging and Therapy 2024;21(3):150-154
Objective To explore the value of CT radiomics combined with clinical data and CT features for predicting TNM stage of thymic epithelial tumor(TET).Methods Data of 216 single TET patients confirmed by surgical pathology were retrospectively analyzed.Totally 151 cases with TNM stage Ⅰ TET were divided into early group,while 27 with TNM stage Ⅲ and 38 with TNM stage Ⅳ TET were divided into late group(n=65).Univariate analysis was used to analyze clinical data and chest CT manifestations.Based on non-contrast-enhanced CT(NECT)and contrast-enhanced CT(CECT),the best radiomics features were extracted and screened to establish radiomics models(RMNECT,RMCECT)for predicting TNM stage of TET.RMNECT-clinic,RMCECT-clinic,RMNECT-clinic-CT and RMCECT-clinic-CT were constructed based on combination of clinical and CT features being significantly different between groups,respectively.The patients were divided into training set(n=151)and validation set(n=65)at the ratio of 7∶3.The above models were trained in the training set using repeated 5-fold cross validation method,and their efficacy were verified in the validation set.Results Significant differences of clinical symptoms and CT manifestations including fat infiltration around the lesion,mediastinal lymph node enlargement and pleural effusion were found between groups(all P<0.05).Based on NECT and CECT,2 and 9 best radiomics features were selected to construct the corresponding models.In validation set,the area under the curve(AUC)of RMNECT-clinic-CT for predicting TNM stage of TET(0.864)was higher than that of RMNECT and RMNECT-clinic(AUC=0.634,0.721,Z=3.081,2.937,P=0.002,0.003),while AUC of RMCECT-clinic-CT(0.920)was also higher than that of RMCECT and RMCECT-clinic(AUC=0.689,0.751,Z=2.698,2.390,P=0.007,0.017).Conclusion CT radiomics combined with clinical data and CT features could effectively predict TNM stage of TET.

Result Analysis
Print
Save
E-mail