1.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
2.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
3.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
4.Advances in the role of protein post-translational modifications in circadian rhythm regulation.
Zi-Di ZHAO ; Qi-Miao HU ; Zi-Yi YANG ; Peng-Cheng SUN ; Bo-Wen JING ; Rong-Xi MAN ; Yuan XU ; Ru-Yu YAN ; Si-Yao QU ; Jian-Fei PEI
Acta Physiologica Sinica 2025;77(4):605-626
The circadian clock plays a critical role in regulating various physiological processes, including gene expression, metabolic regulation, immune response, and the sleep-wake cycle in living organisms. Post-translational modifications (PTMs) are crucial regulatory mechanisms to maintain the precise oscillation of the circadian clock. By modulating the stability, activity, cell localization and protein-protein interactions of core clock proteins, PTMs enable these proteins to respond dynamically to environmental and intracellular changes, thereby sustaining the periodic oscillations of the circadian clock. Different types of PTMs exert their effects through distincting molecular mechanisms, collectively ensuring the proper function of the circadian system. This review systematically summarized several major types of PTMs, including phosphorylation, acetylation, ubiquitination, SUMOylation and oxidative modification, and overviewed their roles in regulating the core clock proteins and the associated pathways, with the goals of providing a theoretical foundation for the deeper understanding of clock mechanisms and the treatment of diseases associated with circadian disruption.
Protein Processing, Post-Translational/physiology*
;
Circadian Rhythm/physiology*
;
Humans
;
Animals
;
CLOCK Proteins/physiology*
;
Circadian Clocks/physiology*
;
Phosphorylation
;
Acetylation
;
Ubiquitination
;
Sumoylation
5.Characterization of hippocampal components of Danzhi Xiaoyao Formula based on HPLC-Q-TOF-MS/MS and network pharmacology and assessment of its therapeutic potential for nervous system diseases.
Wen-Qing HU ; Hui-Yuan GAO ; Li YANG ; Yu-Xin WANG ; Hao-Jie CHENG ; Si-Yu YANG ; Mei-Yu ZHANG ; Jian SUN
China Journal of Chinese Materia Medica 2025;50(14):4053-4062
In this study, the pharmacodynamic components and potential pharmacological functions of Danzhi Xiaoyao Formula in treating nervous system diseases were investigated by hippocampal component characterization and network pharmacology. After rats were administrated with Danzhi Xiaoyao Formula by gavage, high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry(HPLC-Q-TOF-MS/MS) was employed to explore the components in the hippocampus of rats. Fifty-seven components were identified in the hippocampus of rats by comparing the extract of Danzhi Xiaoyao Formula, herbal components in the hippocampus after administration, and blank samples. KEGG and GO analyses predicted 74 core targets including GSK3B, MAPK1, AKT, IL6. These targets were involved in PI3K/Akt, NF-κB, MAPK, JAK/STAT, Wnt, and other signaling pathways. The results indicated that Danzhi Xiaoyao Formula may ameliorate other nervous system diseases enriched in DO, such as neurodegenerative diseases, cerebrovascular diseases, and mental and emotional disorders by mediating target pathways, inhibiting inflammation, reducing neuronal damage, and alleviating hippocampal atrophy. The relevant activities exhibited by this formula in nervous system diseases such as Alzheimer's disease, Parkinson's disease, and diabetic neuropathy have extremely high development value and are worthy of further in-depth research. This study provides a theoretical basis and practical guidance for expanding the application of Danzhi Xiaoyao Formula in the treatment of nervous system diseases.
Drugs, Chinese Herbal/administration & dosage*
;
Animals
;
Rats
;
Hippocampus/metabolism*
;
Network Pharmacology
;
Chromatography, High Pressure Liquid
;
Tandem Mass Spectrometry
;
Rats, Sprague-Dawley
;
Male
;
Nervous System Diseases/genetics*
;
Humans
;
Signal Transduction/drug effects*
6.An observational study on the clinical effects of in-line mechanical in-exsufflation in mechanical ventilated patients.
Bilin WEI ; Huifang ZHENG ; Xiang SI ; Wenxuan YU ; Xiangru CHEN ; Hao YUAN ; Fei PEI ; Xiangdong GUAN
Chinese Critical Care Medicine 2025;37(3):262-267
OBJECTIVE:
To evaluate the safety and clinical therapeutic effect of in-line mechanical in-exsufflation to assist sputum clearance in patients with invasive mechanical ventilation.
METHODS:
A prospective observational study was conducted at the department of critical care medicine, the First Affiliated Hospital of Sun Yat-sen University from April 2022 to May 2023. Patients who were invasively ventilated and treated with in-line mechanical in-exsufflation to assist sputum clearance were enrolled. Baseline data were collected. Sputum viscosity, oxygenation index, parameters of ventilatory function and respiratory mechanics, clinical pulmonary infection score (CPIS) and vital signs before and after day 1, 2, 3, 5, 7 of use of the in-line mechanical in-exsufflation were assessed and recorded. Statistical analyses were performed by using generalized estimating equation (GEE).
RESULTS:
A total of 13 invasively ventilated patients using in-line mechanical in-exsufflation were included, all of whom were male and had respiratory failure, with the main cause being cervical spinal cord injury/high-level paraplegia (38.46%). Before the use of the in-line mechanical in-exsufflation, the proportion of patients with sputum viscosity of grade III was 38.46% (5/13) and decreased to 22.22% (2/9) 7 days after treatment with in-line mechanical in-exsufflation. With the prolonged use of the in-line mechanical in-exsufflation, the patients' CPIS scores tended to decrease significantly, with a mean decrease of 0.5 points per day (P < 0.01). Oxygenation improved significantly, with the oxygenation index (PaO2/FiO2) increasing by a mean of 23.3 mmHg (1 mmHg ≈ 0.133 kPa) per day and the arterial partial pressure of oxygen increasing by a mean of 12.6 mmHg per day (both P < 0.01). Compared to baseline, the respiratory mechanics of the patients improved significantly 7 days after in-line mechanical in-exsufflation use, with a significant increase in the compliance of respiratory system (Cst) [mL/cmH2O (1 cmH2O ≈ 0.098 kPa): 55.6 (50.0, 58.0) vs. 40.9 (37.5, 50.0), P < 0.01], and both the airway resistance and driving pressure (DP) were significantly decreased [airway resistance (cmH2O×L-1×s-1): 9.6 (6.9, 10.5) vs. 12.0 (10.0, 13.0), DP (cmH2O): 9.0 (9.0, 12.0) vs. 11.0 (10.0, 15.0), both P < 0.01]. At the same time, no new lung collapse was observed during the treatment period. No significant discomfort was reported by patients, and there were no substantial changes in heart rate, systolic blood pressure, diastolic blood pressure, and mean arterial pressure before and after the in-line mechanical in-exsufflation treatment.
CONCLUSIONS
The combined use of the in-line mechanical in-exsufflation to assist sputum clearance in patients on invasive mechanical ventilation can effectively improve sputum characteristics, oxygenation and respiratory mechanics. The in-line mechanical in-exsufflation was well tolerated by the patients, with no treatment-related adverse events, which demonstrated its effectiveness and safety.
Humans
;
Prospective Studies
;
Respiration, Artificial/methods*
;
Respiratory Insufficiency/therapy*
;
Sputum
7.Relationship between sugar metabolism and acid production and cariogenicity of Prevotella denticola
Yuan SI ; Yanfei SUN ; Xuejiao SONG ; Junli WAN ; Min LI ; Fang YANG
Journal of Practical Stomatology 2024;40(6):753-758
Objective:To explore the potential relationship between sugar metabolism,acid production and cariogenicity of Prevotella denticola.Methods:Morphological features of Prevotella denticola were observed and respectively cultured under incubation conditions with and without sugar and at different pH values.The growth characteristics of Prevotella denticola were detected by UV-Vis spectro-photometer and pH meter,the organic acid content in the culture supernatants of the cultures was detected by HPLC.Dentin slices were divided into control group,phosphoric acid group and the Prevotella denticola group and cultured in the corresponding mediu for 1 and 2 weeks respectively,the degree of demineralization of the samples was examined SEM and VHM.Results:Prevotella denticola fermen-ted sucrose and glucose,produced acids with its final pH values as low as 4.7,Succinic acid and acetic acid were its main metabolites.Prevotella denticola was moderately acid-tolerant.Furthermore,Prevotella denticola was able to cause dentin demineralization,and the Vickers hardness value of dentin samples in the Prevotella denticola group was significantly decreased compared with the control group(P<0.05).Conclusion:The cariogenic capacity of Prevotella denticola may be related to its sugar metabolism and acid production.
8.Simulated Microgravity can Promote the Apoptosis and Change Inflammatory State of Kupffer Cells
Ge JUN ; Liu FEI ; Nie HONGYUN ; Yue YUAN ; Liu KAIGE ; Lin HAIGUAN ; Li HAO ; Zhang TAO ; Yan HONGFENG ; Xu BINGXIN ; Sun HONGWEI ; Yang JIANWU ; Si SHAOYAN ; Zhou JINLIAN ; Cui YAN
Biomedical and Environmental Sciences 2024;37(10):1117-1127
Objective In this study,we analyzed the transcriptome sequences of Kupffer cells exposed to simulated microgravity for 3 d and conducted biological experiments to determine how microgravity initiates apoptosis in Kupffer cells. Methods Rotary cell culture system was used to construct a simulated microgravity model.GO and KEGG analyses were conducted using the DAVID database.GSEA was performed using the R language.The STRING database was used to conduct PPI analysis.qPCR was used to measure the IL1B,TNFA,CASP3,CASP9,and BCL2L11 mRNA expressions.Western Blotting was performed to detect the level of proteins CASP3 and CASP 9.Flow cytometry was used to detect apoptosis and mitochondrial membrane cells.Transmission electron microscopy was used to detect changes in the ultrastructure of Kupffer cells. Results Transcriptome Sequencing indicated that simulated microgravity affected apoptosis and the inflammatory state of Kupffer cells.Simulated microgravity improved the CASP3,CASP9,and BCL2L11 expressions in Kupffer cells.Annexin-V/PI and JC-1 assays showed that simulated microgravity promoted apoptosis in Kupffer cells.Simulated microgravity causes M1 polarization in Kupffer cells. Conclusion Our study found that simulated microgravity facilitated the apoptosis of Kupffer cells through the mitochondrial pathway and activated Kupffer cells into M1 polarization,which can secrete TNFA to promote apoptosis.
9.Analysis of the Current Situation of Basic Research on Acupuncture and Moxibustion and Strategy for Its Development
Xiao-Rong TANG ; Si-Yun CHEN ; Wei-Hua YUAN ; Jian SUN ; Ai-Jun LIU ; Li-Ming LU ; Chun-Zhi TANG ; Neng-Gui XU
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(10):2727-2733
In recent years,the development of acupuncture and moxibustion(shortened as acup-moxibustion)has flourished.With the verification of clinical efficacy of acup-moxibustion,its basic research has gradually drawn the attention of the practitioners accordingly.But how to scientifically perform the basic research of acup-moxibustion and to serve the clinic effectively has become a major problem for the contemporary Chinese medicine practitioners.By analyzing the characteristics of acup-moxibustion-related research projects funded by the National Natural Science Foundation of China,this paper outlined the current status of domestic research of acup-moxibustion,and proposed four suggestions after analyzing the problems and weaknesses of acup-moxibustion basic research in China:①the clinical evidence-based system in the current acup-moxibustion should be further constructed and the basic research should be focused on the area of advantages;② the key problems of acup-moxibustion basic research should be clarified,and the proportion of original researches should be increased;③ the integration of production,teaching and research of acup-moxibustion should be enhanced to adapt to the era of big science;④ the funding system and its polity and structure needed to be reformed.This study will help to increase the discipline ranking of acup-moxibustion,enhance its high-quality development,and promote its internationalization.
10.Development and validation of a stromal-immune signature to predict prognosis in intrahepatic cholangiocarcinoma
Yu-Hang YE ; Hao-Yang XIN ; Jia-Li LI ; Ning LI ; Si-Yuan PAN ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Peng-Cheng WANG ; Chu-Bin LUO ; Rong-Qi SUN ; Jia FAN ; Jian ZHOU ; Zheng-Jun ZHOU ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2024;30(4):914-928
Background:
Intrahepatic cholangiocarcinoma (ICC) is a highly desmoplastic tumor with poor prognosis even after curative resection. We investigated the associations between the composition of the ICC stroma and immune cell infiltration and aimed to develop a stromal-immune signature to predict prognosis in surgically treated ICC.
Patients and methods:
We recruited 359 ICC patients and performed immunohistochemistry to detect α-smooth muscle actin (α-SMA), CD3, CD4, CD8, Foxp3, CD68, and CD66b. Aniline was used to stain collagen deposition. Survival analyses were performed to detect prognostic values of these markers. Recursive partitioning for a discrete-time survival tree was applied to define a stromal-immune signature with distinct prognostic value. We delineated an integrated stromal-immune signature based on immune cell subpopulations and stromal composition to distinguish subgroups with different recurrence-free survival (RFS) and overall survival (OS) time.
Results:
We defined four major patterns of ICC stroma composition according to the distributions of α-SMA and collagen: dormant (α-SMAlow/collagenhigh), fibrogenic (α-SMAhigh/collagenhigh), inert (α-SMAlow/collagenlow), and fibrolytic (α-SMAhigh/collagenlow). The stroma types were characterized by distinct patterns of infiltration by immune cells. We divided patients into six classes. Class I, characterized by high CD8 expression and dormant stroma, displayed the longest RFS and OS, whereas Class VI, characterized by low CD8 expression and high CD66b expression, displayed the shortest RFS and OS. The integrated stromal-immune signature was consolidated in a validation cohort.
Conclusion
We developed and validated a stromal-immune signature to predict prognosis in surgically treated ICC. These findings provide new insights into the stromal-immune response to ICC.

Result Analysis
Print
Save
E-mail