1.Structure and Function of GPR126/ADGRG6
Ting-Ting WU ; Si-Qi JIA ; Shu-Zhu CAO ; De-Xin ZHU ; Guo-Chao TANG ; Zhi-Hua SUN ; Xing-Mei DENG ; Hui ZHANG
Progress in Biochemistry and Biophysics 2025;52(2):299-309
GPR126, also known as ADGRG6, is one of the most deeply studied aGPCRs. Initially, GPR126 was thought to be a receptor associated with muscle development and was primarily expressed in the muscular and skeletal systems. With the deepening of research, it was found that GPR126 is expressed in multiple mammalian tissues and organs, and is involved in many biological processes such as embryonic development, nervous system development, and extracellular matrix interactions. Compared with other aGPCRs proteins, GPR126 has a longer N-terminal domain, which can bind to ligands one-to-one and one-to-many. Its N-terminus contains five domains, a CUB (complement C1r/C1s, Uegf, Bmp1) domain, a PTX (Pentraxin) domain, a SEA (Sperm protein, Enterokinase, and Agrin) domain, a hormone binding (HormR) domain, and a conserved GAIN domain. The GAIN domain has a self-shearing function, which is essential for the maturation, stability, transport and function of aGPCRs. Different SEA domains constitute different GPR126 isomers, which can regulate the activation and closure of downstream signaling pathways through conformational changes. GPR126 has a typical aGPCRs seven-transmembrane helical structure, which can be coupled to Gs and Gi, causing cAMP to up- or down-regulation, mediating transmembrane signaling and participating in the regulation of cell proliferation, differentiation and migration. GPR126 is activated in a tethered-stalk peptide agonism or orthosteric agonism, which is mainly manifested by self-proteolysis or conformational changes in the GAIN domain, which mediates the rapid activation or closure of downstream pathways by tethered agonists. In addition to the tethered short stem peptide activation mode, GPR126 also has another allosteric agonism or tunable agonism mode, which is specifically expressed as the GAIN domain does not have self-shearing function in the physiological state, NTF and CTF always maintain the binding state, and the NTF binds to the ligand to cause conformational changes of the receptor, which somehow transmits signals to the GAIN domain in a spatial structure. The GAIN domain can cause the 7TM domain to produce an activated or inhibited signal for signal transduction, For example, type IV collagen interacts with the CUB and PTX domains of GPR126 to activate GPR126 downstream signal transduction. GPR126 has homology of 51.6%-86.9% among different species, with 10 conserved regions between different species, which can be traced back to the oldest metazoans as well as unicellular animals.In terms of diseases, GPR126 dysfunction involves the pathological process of bone, myelin, embryo and other related diseases, and is also closely related to the occurrence and development of malignant tumors such as breast cancer and colon cancer. However, the biological function of GPR126 in various diseases and its potential as a therapeutic target still needs further research. This paper focuses on the structure, interspecies differences and conservatism, signal transduction and biological functions of GPR126, which provides ideas and references for future research on GPR126.
2.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
3.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
4.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
5.Inflammatory and Immunomodulatory Effects of Tripterygium wilfordii Multiglycoside in Mouse Models of Psoriasis Keratinocytes.
Shuo ZHANG ; Hong-Jin LI ; Chun-Mei YANG ; Liu LIU ; Xiao-Ying SUN ; Jiao WANG ; Si-Ting CHEN ; Yi LU ; Man-Qi HU ; Ge YAN ; Ya-Qiong ZHOU ; Xiao MIAO ; Xin LI ; Bin LI
Chinese journal of integrative medicine 2024;30(3):222-229
OBJECTIVE:
To determine the role of Tripterygium wilfordii multiglycoside (TGW) in the treatment of psoriatic dermatitis from a cellular immunological perspective.
METHODS:
Mouse models of psoriatic dermatitis were established by imiquimod (IMQ). Twelve male BALB/c mice were assigned to IMQ or IMQ+TGW groups according to a random number table. Histopathological changes in vivo were assessed by hematoxylin and eosin staining. Ratios of immune cells and cytokines in mice, as well as PAM212 cell proliferation in vitro were assessed by flow cytometry. Pro-inflammatory cytokine expression was determined using reverse transcription quantitative polymerase chain reaction.
RESULTS:
TGW significantly ameliorated the severity of IMQ-induced psoriasis-like mouse skin lesions and restrained the activation of CD45+ cells, neutrophils and T lymphocytes (all P<0.01). Moreover, TGW significantly attenuated keratinocytes (KCs) proliferation and downregulated the mRNA levels of inflammatory cytokines including interleukin (IL)-17A, IL-23, tumor necrosis factor α, and chemokine (C-X-C motif) ligand 1 (P<0.01 or P<0.05). Furthermore, it reduced the number of γ δ T17 cells in skin lesion of mice and draining lymph nodes (P<0.01).
CONCLUSIONS
TGW improved psoriasis-like inflammation by inhibiting KCs proliferation, as well as the associated immune cells and cytokine expression. It inhibited IL-17 secretion from γ δ T cells, which improved the immune-inflammatory microenvironment of psoriasis.
Male
;
Animals
;
Mice
;
Tripterygium
;
Psoriasis/drug therapy*
;
Keratinocytes
;
Skin Diseases/metabolism*
;
Cytokines/metabolism*
;
Imiquimod/metabolism*
;
Dermatitis/pathology*
;
Disease Models, Animal
;
Mice, Inbred BALB C
;
Skin/metabolism*
6.Research on species identification of commercial medicinal and food homology scented herbal tea
Jing SUN ; Zi-yi HUANG ; Si-qi LI ; Yu-fang LI ; Yan HU ; Shi-wen GUO ; Ge HU ; Chuan-pu SHEN ; Fu-rong YANG ; Yu-lin LIN ; Tian-yi XIN ; Xiang-dong PU
Acta Pharmaceutica Sinica 2024;59(9):2612-2624
The adulteration and counterfeiting of herbal ingredients in medicinal and food homology (MFH) have a serious impact on the quality of herbal materials, thereby endangering human health. Compared to pharmaceutical drugs, health products derived from traditional Chinese medicine (TCM) are more easily accessible and closely integrated into consumers' daily life. However, the authentication of the authenticity of TCM ingredients in MFH has not received sufficient attention. The lack of clear standards emphasizes the necessity of conducting systematic research in this area. This study utilized DNA barcoding technology, combining ITS2,
7.Clinical trial of cipofol combined with afentanil in the treatment of patients undergoing bronchoscopy
Yu-Feng HUI ; Si-Qi TAN ; Ying-Jie SUN
The Chinese Journal of Clinical Pharmacology 2024;40(19):2806-2810
Objective To compare the clinical efficacy and safety of cyclopofol injection and propofol injection combined with afentanil injection in patients undergoing tracheoscopy under laryngeal mask ventilation under general anesthesia.Methods The patients to undergo tracheoscopy were randomly divided into treatment group and control group.Induction of anesthesia:treatment group received 20 μg·kg-1 afentanil,0.4 mg·kg-1 ciprofol and 0.2 mg·kg-1 cisatracurium;control group received 20 μg·kg-1afentanil,2 mg·kg-1 propofol and 0.2 mg·kg-1 cisatracurium.Two groups were given laryngeal mask ventilation for general anesthesia.The treatment group received 0.8 mg·kg-1·h-1 cypofol and 0.5-1.0 μg·kg-1·min-1 afentanil to perform the anesthesia maintenance;the control group was received 8 mg·kg-1·h-1propofol and 0.5-1.0 μg·kg-1·min-1 afentanil to perform the anesthesia maintenance.The vital signs,induction and recovery time,dosage of afentanil during anesthesia and safety were compared between the two groups.Results Treatment group were enrolled 70 cases,10 cases dropped out,and 60 cases were finally included in the statistical analysis.Control group were enrolled 70 cases,10 cases dropped out,and ultimately 60 cases were finally included in the statistical analysis.Three minutes after induction of anesthesia(T1),the mean arterial pressure(MAP)of treatment group and control group were(79.32±5.73)and(73.15±6.20)mmHg,the heart rate(HR)were(70.53±8.20)and(65.77±7.75)beat·min-1,respectively.At insert the bronchoscope(T2),MAP of treatment group and control group were(82.52±5.81)and(75.99±6.09)mmHg,HR were(70.27±7.94)and(65.42±7.73)beat·min-1,respectively.The MAP and HR of treatment group at T1 and T2 were significantly higher than those of control group at the same time,the differences were statistically significant(all P<0.05).The induction time of treatment group and control group was(76.23±6.51)and(66.93±6.26)s,and the difference was statistically significant(P<0.05).The eye opening time during anesthesia recovery of treatment group and control group was(8.42±1.94)and(8.48±2.13)min,the intraoperative dosage of fentanyl was(3 456.67±608.51)and(3 515.00±619.41)μg,respectively,the differences of above indexes in two groups were not statistical significance(all P>0.05).The incidences of injection pain during induction period in treatment group and control group were 3.33%and 30.00%,the incidences of hypotension in treatment group and control group were 18.33%and 40.00%,the incidences of intraoperative bradycardia in treatment group and control group were 3.33%and 13.33%,respectively,the differences were statistically significant(all P<0.05).Conclusion Compared with propofol injection combined with afentanil injection,cipofol injection combined with afentanil injection can better maintain hemodynamic stability during anesthesia induction and maintenance in patients undergoing tracheoscopy under general anesthesia with laryngeal mask ventilation,and has better safety.
8.Research on robot-based surgical instrument detection and pose estimation algorithm with multi-cascade deep learning processor
Si-Qi HAN ; Min-Kui CHEN ; Li-Pu WEI ; Qian RAN ; Qian XU ; Ming YU ; Yu-Chao SUN ; Feng CHEN
Chinese Medical Equipment Journal 2024;45(6):1-8
Objective To propose a multi-cascade deep learning processor-based surgical instrument detection and pose estimation algorithm to facilitate the robotic scurb nurse to recognize and delivery surgical instruments.Methods The proposed multi-cascade deep leaning processor-based CYSP algorithm was hibernated with several functional modules such as YOLOX with coordinate attention block(CA-YOLOX),segment anything model(SAM)and principal component analysis(PCA).Firstly,CA-YOLOX was applied to identifying the types of the surgical instruments and completing the coarse positioning of x and y coordinates;secondly,the SAM segmenter was used to clarify the positions of the instruments in the RGB image,and the depth information and internal parameters of the camera were introduced to obtain the point cloud of the surgical instruments;finally,the center of mass,principal direction and normal direction of the surgical instrument point cloud were determined through the PCA algorithm,with which the rotation and translation(RT)matrix between the target coordinate system(surgical instrument center of mass coordinate system)and the base coordinate system of the robotic arm was solved,and the matrix was converted into a quaternion and then transmitted to the robotic arm control unit so as to drive the robotic arm to arrive at the corresponding position and pick up the instrument to complete the instrument delivery task.Migration training was accomplished on a self-constructed surgical instrument image dataset and the effectiveness of the proposed algorithm was evaluated,and instrument delivery experiments were performed on a seven-degree-of-freedom robotic arm and the success rate of the algorithm was assessed.Results The multi-cascade deep leaning processor-based CYSP algorithm had a recognition accuracy of 98.52%on the surgical instrument dataset,a success rate of 94%for the in-strument delivery experiment and average time for recognition of 0.28 s.Conclusion The multi-cascade deep leaning proces-sor-based CYSP algorithm with high reliability and practicability behaves well in facilitating the robotic scurb nurse to recog-nize and deliver surgical instruments.[Chinese Medical Equipment Journal,2024,45(6):1-8]
9.Leigh syndrome caused by the mitochondrial m.8993T>G mutation with hypocitrullinemia:a report of four cases and literature review
Ying-Xue LI ; Dong-Juan WANG ; Mao-Bin ZHOU ; Hao-Xuan SUN ; Si-Qi HONG ; Li JIANG ; Yi GUO
Chinese Journal of Contemporary Pediatrics 2024;26(9):940-945
Objective To explore early diagnostic biological markers for Leigh syndrome caused by the m.8993T>G mutation.Methods A retrospective analysis was performed on the clinical data of four children diagnosed with m.8993T>G mutation-related mitochondrial disease at the Children's Hospital of Chongqing Medical University from January 2014 to January 2024.Additionally,a literature review was conducted.Results All four children had plasma amino acid and acylcarnitine analyses that revealed decreased citrulline levels,and one child was initially identified through neonatal genetic metabolic disease screening.According to the literature review,there were 26 children with mitochondrial disease and hypocitrullinemia caused by the m.8993T>G mutation(including the four children in this study).Among these,12 children exhibited clinical phenotypes of Leigh syndrome or Leigh-like syndrome,while 18 children were identified with hypocitrullinemia and/or elevated levels of 3-hydroxyisovalerylcarnitine(C5-OH)during neonatal genetic metabolic disease screening.Conclusions Hypocitrullinemia may serve as a potential biomarker for the early diagnosis of m.8993T>G mutation-associated Leigh syndrome,detectable as early as during neonatal genetic metabolic disease screening.
10.Background, design, and preliminary implementation of China prospective multicenter birth cohort
Si ZHOU ; Liping GUAN ; Hanbo ZHANG ; Wenzhi YANG ; Qiaoling GENG ; Niya ZHOU ; Wenrui ZHAO ; Jia LI ; Zhiguang ZHAO ; Xi PU ; Dan ZHENG ; Hua JIN ; Fei HOU ; Jie GAO ; Wendi WANG ; Xiaohua WANG ; Aiju LIU ; Luming SUN ; Jing YI ; Zhang MAO ; Zhixu QIU ; Shuzhen WU ; Dongqun HUANG ; Xiaohang CHEN ; Fengxiang WEI ; Lianshuai ZHENG ; Xiao YANG ; Jianguo ZHANG ; Zhongjun LI ; Qingsong LIU ; Leilei WANG ; Lijian ZHAO ; Hongbo QI
Chinese Journal of Perinatal Medicine 2024;27(9):750-755
China prospective multicenter birth cohort (Prospective Omics Health Atlas birth cohort, POHA birth cohort) study was officially launched in 2022. This study, in collaboration with 12 participating units, aims to establish a high-quality, multidimensional cohort comprising 20 000 naturally conceived families and assisted reproductive families. The study involves long-term follow-up of parents and offspring, with corresponding biological samples collected at key time points. Through multi-omics testing and analysis, the study aims to conduct multi-omics big data research across the entire maternal and infant life cycle. The goal is to identify new biomarkers for maternal and infant diseases and provide scientific evidence for risk prediction related to maternal diseases and neonatal health.

Result Analysis
Print
Save
E-mail