1.Animal Model of Chronic Obstructive Pulmonary Disease and Intervention Effect of Traditional Chinese Medicine: A Review
Jiyu ZOU ; Lijian PANG ; Tianjiao WANG ; Ningzi ZANG ; Zhongxue ZHAO ; Yongming LIU ; Qi SI ; Tianya CAO ; Xuenan MA ; Ying WANG ; Jiaran WANG ; Xiaodong LYU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):294-303
Chronic obstructive pulmonary disease (COPD), as one of the three major causes of death, is a complex systemic disease with high prevalence, high mortality, high disability, frequent acute exacerbations, and a variety of pulmonary complications. The pathogenesis is complex. Western medicine has no effective specificity scheme for a complete cure. However, multiple-component and multiple-target characteristics of traditional Chinese medicine (TCM) demonstrate significant advantages in COPD treatment through multi-link, multi-pathway, and multi-mechanism intervention. Therefore, exploring the essence of COPD pathogenesis and discovering effective TCM treatment drugs through the application of TCM principles and prescriptions is a key focus of modern research. Animal models are of paramount importance in medical research. It is the first consideration to select appropriate animals, adopt reasonable modeling methods to replicate stable animal models that closely resemble the clinical manifestations and pathophysiological characteristics of COPD, and use appropriate evaluation methods to determine the success of COPD animal models in experimental research. The core of experimental research lies in observing the intervention effect of TCM on COPD animal models, exploring the specific pathways and regulatory mechanisms of TCM on COPD disease, and finding TCM monomers, single herbs, and TCM formulas with definite curative effects. At present, animal model research on COPD mainly involves model establishment, model evaluation, efficacy observation, mechanism exploration, and other aspects. In recent years, there has been no systematic organization, update, and reflection on the relevant research on TCM intervention in COPD animal models. This study reviewed the selection of animals for the COPD model, methods for establishing COPD animal models, model evaluation methods, and the intervention effects of TCM on COPD animal models. It aims to grasp the current research status and identify existing problems for further improvement, in order to provide evidence and support for scientific research and clinical treatment of COPD.
2.Animal Model of Chronic Obstructive Pulmonary Disease and Intervention Effect of Traditional Chinese Medicine: A Review
Jiyu ZOU ; Lijian PANG ; Tianjiao WANG ; Ningzi ZANG ; Zhongxue ZHAO ; Yongming LIU ; Qi SI ; Tianya CAO ; Xuenan MA ; Ying WANG ; Jiaran WANG ; Xiaodong LYU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):294-303
Chronic obstructive pulmonary disease (COPD), as one of the three major causes of death, is a complex systemic disease with high prevalence, high mortality, high disability, frequent acute exacerbations, and a variety of pulmonary complications. The pathogenesis is complex. Western medicine has no effective specificity scheme for a complete cure. However, multiple-component and multiple-target characteristics of traditional Chinese medicine (TCM) demonstrate significant advantages in COPD treatment through multi-link, multi-pathway, and multi-mechanism intervention. Therefore, exploring the essence of COPD pathogenesis and discovering effective TCM treatment drugs through the application of TCM principles and prescriptions is a key focus of modern research. Animal models are of paramount importance in medical research. It is the first consideration to select appropriate animals, adopt reasonable modeling methods to replicate stable animal models that closely resemble the clinical manifestations and pathophysiological characteristics of COPD, and use appropriate evaluation methods to determine the success of COPD animal models in experimental research. The core of experimental research lies in observing the intervention effect of TCM on COPD animal models, exploring the specific pathways and regulatory mechanisms of TCM on COPD disease, and finding TCM monomers, single herbs, and TCM formulas with definite curative effects. At present, animal model research on COPD mainly involves model establishment, model evaluation, efficacy observation, mechanism exploration, and other aspects. In recent years, there has been no systematic organization, update, and reflection on the relevant research on TCM intervention in COPD animal models. This study reviewed the selection of animals for the COPD model, methods for establishing COPD animal models, model evaluation methods, and the intervention effects of TCM on COPD animal models. It aims to grasp the current research status and identify existing problems for further improvement, in order to provide evidence and support for scientific research and clinical treatment of COPD.
3.Structure and Function of GPR126/ADGRG6
Ting-Ting WU ; Si-Qi JIA ; Shu-Zhu CAO ; De-Xin ZHU ; Guo-Chao TANG ; Zhi-Hua SUN ; Xing-Mei DENG ; Hui ZHANG
Progress in Biochemistry and Biophysics 2025;52(2):299-309
GPR126, also known as ADGRG6, is one of the most deeply studied aGPCRs. Initially, GPR126 was thought to be a receptor associated with muscle development and was primarily expressed in the muscular and skeletal systems. With the deepening of research, it was found that GPR126 is expressed in multiple mammalian tissues and organs, and is involved in many biological processes such as embryonic development, nervous system development, and extracellular matrix interactions. Compared with other aGPCRs proteins, GPR126 has a longer N-terminal domain, which can bind to ligands one-to-one and one-to-many. Its N-terminus contains five domains, a CUB (complement C1r/C1s, Uegf, Bmp1) domain, a PTX (Pentraxin) domain, a SEA (Sperm protein, Enterokinase, and Agrin) domain, a hormone binding (HormR) domain, and a conserved GAIN domain. The GAIN domain has a self-shearing function, which is essential for the maturation, stability, transport and function of aGPCRs. Different SEA domains constitute different GPR126 isomers, which can regulate the activation and closure of downstream signaling pathways through conformational changes. GPR126 has a typical aGPCRs seven-transmembrane helical structure, which can be coupled to Gs and Gi, causing cAMP to up- or down-regulation, mediating transmembrane signaling and participating in the regulation of cell proliferation, differentiation and migration. GPR126 is activated in a tethered-stalk peptide agonism or orthosteric agonism, which is mainly manifested by self-proteolysis or conformational changes in the GAIN domain, which mediates the rapid activation or closure of downstream pathways by tethered agonists. In addition to the tethered short stem peptide activation mode, GPR126 also has another allosteric agonism or tunable agonism mode, which is specifically expressed as the GAIN domain does not have self-shearing function in the physiological state, NTF and CTF always maintain the binding state, and the NTF binds to the ligand to cause conformational changes of the receptor, which somehow transmits signals to the GAIN domain in a spatial structure. The GAIN domain can cause the 7TM domain to produce an activated or inhibited signal for signal transduction, For example, type IV collagen interacts with the CUB and PTX domains of GPR126 to activate GPR126 downstream signal transduction. GPR126 has homology of 51.6%-86.9% among different species, with 10 conserved regions between different species, which can be traced back to the oldest metazoans as well as unicellular animals.In terms of diseases, GPR126 dysfunction involves the pathological process of bone, myelin, embryo and other related diseases, and is also closely related to the occurrence and development of malignant tumors such as breast cancer and colon cancer. However, the biological function of GPR126 in various diseases and its potential as a therapeutic target still needs further research. This paper focuses on the structure, interspecies differences and conservatism, signal transduction and biological functions of GPR126, which provides ideas and references for future research on GPR126.
4.Simultaneous GC-MS determination of sixteen pesticide residues and safety assessment for Lycii Fructus
Jia-Qi QIN ; Qiang-Qiang QI ; Ya-Jun ZHANG ; Yan WANG ; Si-Yuan ZHAO ; De-Yan CAO ; Mei-Lin ZHU
Chinese Traditional Patent Medicine 2024;46(1):143-149
AIM To establish a GC-MS method for the simultaneous content determination of sixteen pesticide residues in Lycii Fructus and perform safety assessment.METHODS The analysis was performed on DB-5MS chromatographic column(30 m×0.25 mm,0.25 μm)subjected to the programmed heating,with splitless injection of 1.0 μL dissolved sample at a flowing rate of 1.0 mL/min.Other parameters were as follows:injection port temperature of 250℃,electron impact ionization(EI),electron energy of 70 eV;ion source temperature of 230℃,multi-reaction monitoring mode,and collision gas.of high-purity N2.Pesticide residues with relatively high dietary risk were analyzed and discussed with regard to residue levels,dietary intake risk,risk ranking and cumulative exposure assessment.RESULTS Sixteen pesticides showed good linear relationships within their own ranges(r≥0.994 4),whose average recoveries were 70%-114%,with the RSDs of less than 2%.The highest average cyfluthrin residue of 0.999 2 mg/kg in Lycii Fructus of production regions and the highest average cypermethrin residue of 0.088 4 mg/kg in Lycii Fructus commodities were both detected.In Lycii Fructus of production regions with chronic hazard index(HI)value of 0.012 9 and acute HI value of 0.065 5 and their commodities with chronic HI of 0.001 2 and acute HI of 0.005 4,the pesticide residue of cypermethrin was the leading cause of chronic and acute dietary risk,and additionally,pyridaben within maximum residue limit(MRL)was the only detectectable highly toxic pesticide among the other most concerning pestcides of deltamethrin,pyridaben,chlorpyrifos,dichlorvos and methidathion.CONCLUSION There exist pesticide residues within MRL values in some samples of Lycii Fructus and the use of cypermethrin should be well-controlled.
5.Efficacy and mechanism of compound Wufengcao liquid combined with negative pressure wound therapy with instillation in treatment of stage Ⅲ-Ⅳ pressure injury
Li-Min CAO ; Zi-Hui HUANG ; Yu-Ling WANG ; Jia-Yan QIAN ; Bei-Bei GAO ; Si-Qi CHEN ; Jia-Chen WENG
Medical Journal of Chinese People's Liberation Army 2024;49(4):396-407
Objective To observe the clinical efficacy of compound Wufengcao liquid combined with negative pressure wound therapy with instillation(NPWTi)for the treatment of stage Ⅲ-Ⅳ pressure injury(PI),and to preliminarily explore its action mechanism.Methods(1)Clinical research:from January 2019 to October 2022,60 PI patients who were admitted to the Scrofula Department and Wound Care Clinic at Nanjing Municipal Hospital of Traditional Chinese and Western Medicine were randomly divided into normal saline NPWTi group and compound Wufengcao liquid NPWTi group,with 30 cases in each group.Both groups underwent NPWTi under the premise of systemic basic treatment,before treatment,after removing the negative pressure device in the 1st,2nd and 3rd weeks of treatment,the pressure ulcer scale for healing(PUSH)score,the wound bacterial culture detection rate and the wound healing time were counted,and the vascular endothelial growth factor(VEGF)content of wound tissue was detected by ELISA method.(2)Animal experiments:24 SD rats were randomly divided into blank group,model group,normal saline NPWTi group and compound Wufengcao liquid NPWTi group,6 rats in each group.PI rat model was established by local tissue ischemia/reperfusion injury method,and the negative pressure device was removed at the end of each day of treatment.Before treatment and 3,7 and 10 days after treatment,the wound morphology of each group of rats was observed,the wound histopathology was observed by HE staining,the CD34 positive cells rate of wound tissue was detected by immunohistochemistry,and the expressions of p38 mitogen-activated protein kinase(p38 MAPK),nuclear factor-κB p65(NF-κB p65),inducible nitric oxide synthase(iNOS),tumor necrosis factor-α(TNF-α),arginase-1(Arg-1)and transforming growth factor-β(TGF-β)in rat blood and wound tissue were detected by ELISA and RT-qPCR.Results(1)Clinical research:Both groups could effectively reduce the PUSH score and the wound bacterial culture detection rate,shorten the wound healing time,and promote the expression of VEGF in wound tissue,the compound Wufengcao liquid NPWTi group was better than the normal saline NPWTi group(P<0.05).(2)Animal experiments:Compared with blank group,the rats in the model group showed obvious wound inflammatory response and tissue damage,and the CD34 positive cells rate,blood and wound tissue p38 MAPK,NF-κB p65,iNOS and TNF-α levels were significantly increased,Arg-1 and TGF-β level was significantly reduced(P<0.05);Compared with model group,after 7 days of treatment,the normal saline NPWTi group and the compound Wufengcao liquid NPWTi group significantly decreased the wound morphology score,the histopathological morphology was significantly improved,the CD34 positive cells rate was significantly increased(P<0.05),the levels of blood and wound tissue p38 MAPK,NF-κB p65,iNOS,and TNF-α were significantly reduced,and the levels of Arg-1 and TGF-β were significantly increased(P<0.05),and the compound Wufengcao liquid NPWTi group was better than that of the normal saline NPWTi group(P<0.05).Conclusion Compound Wufengcao liquid combined with NPWTi can effectively promote the healing of PI wounds,and its mechanism of action may be by inhibiting the activation and expression of p38 MAPK/NF-κB signaling pathway,thereby regulating the polarization balance of M1/M2 macrophages.
6.Study on inhibitory effect of alisol B on non-small cell lung cancer based on network pharmacology and its mechanism
Liu-Yan XIANG ; Wen-Xuan WANG ; Si-Meng GU ; Xiao-Qian ZHANG ; Lu-Yao LI ; Yu-Qian LI ; Yuan-Ru WANG ; Qi-Qi LEI ; Xue YANG ; Ya-Jun CAO ; Xue-Jun LI
Chinese Pharmacological Bulletin 2024;40(12):2375-2384
Aim To explore the potential genes and mechanism of alisol B in the treatment of non-small cell lung cancer(NSCLC).Methods The proliferation and migration of NSCLC cells were detected by CCK-8 and Transwell.Genes of NSCLC and alisol B were col-lected through TCGA and compound gene prediction database,and their intersection genes were obtained.The network of protein-protein interaction(PPI)was constructed by using String database,and the top 20 key nodes were screened out,and the prognosis-related proteins related to the prognosis of NSCLC were screened out by using R language,and the intersection of them was obtained.The potential mechanism of ali-sol B on NSCLC was explored by KEGG and GO en-richment analysis and the relationship between related genes and immune cells,which was verified by cell-lev-el experiments.Results Alisol B inhibited the cell activity and migration ability of NSCLC cells.Five im-portant genes were identified by network pharmacologi-cal analysis:CCNE1,CDK1,COL1A1,COL1A2 and COL3A1.The results of cell experiment showed that al-isol B down-regulated the expression of Cyclin E1,CDK1 and COL1A2 in NSCLC cells.In addition,alisol B could inhibit the expression of COL1A2 and M2 macrophage marker CD206 in macrophages.Conclu-sions Alisol B may inhibit the proliferation of tumor cells by down-regulating CDK1 and Cyclin E1,and may affect the function of macrophages by inhibiting COL1A2,thus regulating the tumor immune microenvi-ronment and inhibiting NSCLC.
7.Evaluation of a stent system based on "PETTICOAT" technique in distal aortic remodeling for type B aortic dissection: a multi-center "Matching" comparative study
Chengkai HU ; Jue YANG ; Wei WANG ; Xiangchen DAI ; Xinwu LU ; Youfei QI ; Hongpeng ZHANG ; Yuchong ZHANG ; Shouji QIU ; Genmao CAO ; Enci WANG ; Peng LIN ; Fandi MO ; Shiyi LI ; Zheyun LI ; Ziang ZUO ; Yi SI ; Weiguo FU ; Lixin WANG
Chinese Journal of General Surgery 2024;39(5):350-356
Objective:To compare the aortic remodeling of the Fabulous stent system and standard thoracic aortic endovascular repair (TEVAR) on distal aorta type B aortic dissection (TBAD). Methods:The prospective data collected between Dec 2017 and Oct 2019 from 134 patients with type B aortic dissection (TBAD) who underwent treatment with the "Fabulous" stent system, and retrospective data from 159 TBAD patients receiving standard TEVAR from corresponding multicenter. By using propensity score matching analysis, we compared the prognosis and aortic remodeling outcomes in patients undergoing Fabulous and standard TEVAR treatments during a 1-year postoperative follow-up.Results:In this study, 62 patients in Fabulous group and 62 patients in standard TEVAR were included.There were no significant statistical differences in baseline characteristics between the two groups. In terms of aortic remodeling in bare stent region, Fabulous group had better change trends of diameter of true lumen [10.6 (4.4, 14.5) mm vs. 4.7 (0.9, 10.7) mm, P=0.001] and false lumen [-24.2 (-30.5, -4.9) mm vs. 0.7 (-11.8, 2.3) mm, P<0.001] than those in the standard TEVAR group. The rate of complete false lumen thrombosis was also higher in the Fabulous group (62.9% vs. 37.1%, P=0.042). Conclusion:The Fabulous stent system, when compared to standard TEVAR surgery, demonstrates good aortic remodeling outcomes in the distal aorta.
8.Role and mechanisms of CHI3L1 in coronary artery lesions in a mouse model of Kawasaki disease-like vasculitis.
Yue CAO ; Shuai GAO ; Gang LUO ; Shui-Yan ZHAO ; Ya-Qi TANG ; Zhan-Hui DU ; Si-Lin PAN
Chinese Journal of Contemporary Pediatrics 2023;25(12):1227-1233
OBJECTIVES:
To explore the role and potential mechanisms of chitinase-3-like protein 1 (CHI3L1) in coronary artery lesions in a mouse model of Kawasaki disease (KD)-like vasculitis.
METHODS:
Four-week-old male SPF-grade C57BL/6 mice were randomly divided into a control group and a model group, with 10 mice in each group. The model group mice were intraperitoneally injected with 0.5 mL of lactobacillus casei cell wall extract (LCWE) to establish a mouse model of KD-like vasculitis, while the control group mice were injected with an equal volume of normal saline. The general conditions of the mice were observed on the 3rd, 7th, and 14th day after injection. Changes in coronary artery tissue pathology were observed using hematoxylin-eosin staining. The level of CHI3L1 in mouse serum was measured by enzyme-linked immunosorbent assay. Immunofluorescence staining was used to detect the expression and localization of CHI3L1, von Willebrand factor (vWF), and α-smooth muscle actin (α-SMA) in coronary artery tissue. Western blot analysis was used to detect the expression of CHI3L1, vWF, vascular endothelial cadherin (VE cadherin), Caspase-3, B cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), nuclear factor κB (NF-κB), and phosphorylated NF-κB (p-NF-κB) in coronary artery tissue.
RESULTS:
The serum level of CHI3L1 in the model group was significantly higher than that in the control group (P<0.05). Compared to the control group, the expression of CHI3L1 in the coronary artery tissue was higher, while the expression of vWF was lower in the model group. The relative expression levels of CHI3L1, Bax, Caspase-3, NF-κB, and p-NF-κB were significantly higher in the model group than in the control group (P<0.05). The relative expression levels of vWF, VE cadherin, and Bcl-2 were lower in the model group than in the control group (P<0.05).
CONCLUSIONS
In the LCWE-induced mouse model of KD-like vasculitis, the expression levels of CHI3L1 in serum and coronary arteries increase, and it may play a role in coronary artery lesions through endothelial cell apoptosis mediated by inflammatory reactions.
Male
;
Animals
;
Mice
;
Mucocutaneous Lymph Node Syndrome/pathology*
;
Coronary Vessels/pathology*
;
NF-kappa B
;
Caspase 3/metabolism*
;
bcl-2-Associated X Protein/metabolism*
;
Chitinase-3-Like Protein 1
;
von Willebrand Factor/metabolism*
;
Mice, Inbred C57BL
;
Cadherins
9.Identification of constituents in vitro and blood-absorbed ingredients of protective effect on acute liver injury from Yin Chen Hao decoction based on UPLC-QTOF/MS
Yi-qing YAO ; Qi CAO ; Xuan WANG ; Hui-lin MA ; Yu-miao CHEN ; Si-yi ZHAO ; Min-xuan GUO ; Jia-meng HU ; Dong-yao WANG ; Di-ya LÜ
Acta Pharmaceutica Sinica 2023;58(5):1173-1180
To identify the active constituents
10.Effects and mechanisms of total flavones of Abelmoschus manihot in improving insulin resistance and podocyte epithelial-mesenchymal transition in diabetic kidney disease based on IRS1/PI3K/Akt pathway.
Yu WANG ; Dong-Wei CAO ; Yi-Gang WAN ; Geng-Lin MU ; Wei WU ; Qi-Jun FANG ; Ya-Jing LI ; Si-Yu CHA ; Yue TU ; Zi-Yue WAN
China Journal of Chinese Materia Medica 2023;48(10):2646-2656
This study aimed to explore the effects and mechanisms of total flavones of Abelmoschus manihot(TFA), the extracts from traditional Chinese medicine indicated for kidney diseases, on insulin resistance(IR) and podocyte epithelial-mesenchymal transition(EMT) in diabetic kidney disease(DKD), and further to reveal the scientific connotation. Thirty-two rats were randomly divided into a normal group, a model group, a TFA group, and a rosiglitazone(ROS) group. The modified DKD model was induced in rats by methods including high-fat diet feeding, unilateral nephrectomy, and streptozotocin(STZ) intraperitoneal injection. After modeling, the rats in the four groups were given double-distilled water, TFA suspension, and ROS suspension correspondingly by gavage every day. At the end of the 8th week of drug administration, all rats were sacrificed, and the samples of urine, blood, and kidney tissues were collected. The parameters and indicators related to IR and podocyte EMT in the DKD model rats were examined and observed, including the general condition, body weight(BW) and kidney weight(KW), the biochemical parameters and IR indicators, the protein expression levels of the key signaling molecules and structural molecules of slit diaphragm in the renal insulin receptor substrate(IRS) 1/phosphatidylinositol 3-kinase(PI3K)/serine-threonine kinase(Akt) pathway, foot process form and glomerular basement membrane(GBM) thickness, the expression of the marked molecules and structural molecules of slit diaphragm in podocyte EMT, and glomerular histomorphological characteristics. The results showed that for the DKD model rats, both TFA and ROS could improve the general condition, some biochemical parameters, renal appearance, and KW. The ameliorative effects of TFA and ROS were equivalent on BW, urinary albumin(UAlb)/urinary creatinine(UCr), serum creatinine(Scr), triglyceride(TG), and KW. Secondly, they could both improve IR indicators, and ROS was superior to TFA in improving fast insulin(FIN) and homeostasis model assessment of insulin resistance(HOMA-IR). Thirdly, they could both improve the protein expression levels of the key signaling molecules in the IRS1/PI3K/Akt pathway and glomerulosclerosis in varying degrees, and their ameliorative effects were similar. Finally, both could improve podocyte injury and EMT, and TFA was superior to ROS. In conclusion, this study suggested that podocyte EMT and glomerulosclerosis could be induced by IR and the decreased activation of the IRS1/PI3K/Akt pathway in the kidney in DKD. Similar to ROS, the effects of TFA in inhibiting podocyte EMT in DKD were related to inducing the activation of the IRS1/PI3K/Akt pathway and improving IR, which could be one of the scientific connotations of TFA against DKD. This study provides preliminary pharmacological evidence for the development and application of TFA in the field of diabetic complications.
Rats
;
Animals
;
Diabetic Nephropathies/drug therapy*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Abelmoschus/chemistry*
;
Podocytes
;
Rats, Sprague-Dawley
;
Epithelial-Mesenchymal Transition
;
Flavones/pharmacology*
;
Insulin Resistance
;
Reactive Oxygen Species
;
Diabetes Mellitus

Result Analysis
Print
Save
E-mail