1.Heterogeneity of Adipose Tissue From a Single-cell Transcriptomics Perspective
Yong-Lang WANG ; Si-Si CHEN ; Qi-Long LI ; Yu GONG ; Xin-Yue DUAN ; Ye-Hui DUAN ; Qiu-Ping GUO ; Feng-Na LI
Progress in Biochemistry and Biophysics 2025;52(4):820-835
Adipose tissue is a critical energy reservoir in animals and humans, with multifaceted roles in endocrine regulation, immune response, and providing mechanical protection. Based on anatomical location and functional characteristics, adipose tissue can be categorized into distinct types, including white adipose tissue (WAT), brown adipose tissue (BAT), beige adipose tissue, and pink adipose tissue. Traditionally, adipose tissue research has centered on its morphological and functional properties as a whole. However, with the advent of single-cell transcriptomics, a new level of complexity in adipose tissue has been unveiled, showing that even under identical conditions, cells of the same type may exhibit significant variation in morphology, structure, function, and gene expression——phenomena collectively referred to as cellular heterogeneity. Single-cell transcriptomics, including techniques like single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), enables in-depth analysis of the diversity and heterogeneity of adipocytes at the single-cell level. This high-resolution approach has not only deepened our understanding of adipocyte functionality but also facilitated the discovery of previously unidentified cell types and gene expression patterns that may play key roles in adipose tissue function. This review delves into the latest advances in the application of single-cell transcriptomics in elucidating the heterogeneity and diversity within adipose tissue, highlighting how these findings have redefined the understanding of cell subpopulations within different adipose depots. Moreover, the review explores how single-cell transcriptomic technologies have enabled the study of cellular communication pathways and differentiation trajectories among adipose cell subgroups. By mapping these interactions and differentiation processes, researchers gain insights into how distinct cellular subpopulations coordinate within adipose tissues, which is crucial for maintaining tissue homeostasis and function. Understanding these mechanisms is essential, as dysregulation in adipose cell interactions and differentiation underlies a range of metabolic disorders, including obesity and diabetes mellitus type 2. Furthermore, single-cell transcriptomics holds promising implications for identifying therapeutic targets; by pinpointing specific cell types and gene pathways involved in adipose tissue dysfunction, these technologies pave the way for developing targeted interventions aimed at modulating specific adipose subpopulations. In summary, this review provides a comprehensive analysis of the role of single-cell transcriptomic technologies in uncovering the heterogeneity and functional diversity of adipose tissues.
2.The Adoption of Non-invasive Photobiomodulation in The Treatment of Epilepsy
Ao-Yun LI ; Zhan-Chuang LU ; Li CAO ; Si CHEN ; Hui JIANG ; Chang-Chun CHEN ; Lei CHEN
Progress in Biochemistry and Biophysics 2025;52(4):882-898
Epilepsy is a chronic neurological disease caused by abnormal synchronous discharge of the brain, which is characterized by recurrent and transient neurological abnormalities, mainly manifested as loss of consciousness and limb convulsions, and can occur in people of all ages. At present, anti-epileptic drugs (AEDs) are still the main means of treatment, but their efficacy is limited by the problem of drug resistance, and long-term use can cause serious side effects, such as cognitive dysfunction and vital organ damage. Although surgical resection of epileptic lesions has achieved certain results in some patients, the high cost and potential risk of neurological damage limit its scope of application. Therefore, the development of safe, accurate and personalized non-invasive treatment strategies has become one of the key directions of epilepsy research. In recent years, photobiomodulation (PBM) has gained significant attention as a promising non-invasive therapeutic approach. PBM uses light of specific wavelengths to penetrate tissues and interact with photosensitive molecules within cells, thereby modulating cellular metabolic processes. Research has shown that PBM can enhance mitochondrial function, promote ATP production, improve meningeal lymphatic drainage, reduce neuroinflammation, and stimulate the growth of neurons and synapses. These biological effects suggest that PBM not only holds the potential to reduce the frequency of seizures but also to improve the metabolic state and network function of neurons, providing a novel therapeutic avenue for epilepsy treatment. Compared to traditional treatment methods, PBM is non-invasive and avoids the risks associated with surgical interventions. Its low risk of significant side effects makes it particularly suitable for patients with drug-resistant epilepsy, offering new therapeutic options for those who have not responded to conventional treatments. Furthermore, PBM’s multi-target mechanism enables it to address a variety of complex etiologies of epilepsy, demonstrating its potential in precision medicine. In contrast to therapies targeting a single pathological mechanism, PBM’s multifaceted approach makes it highly adaptable to different types of epilepsy, positioning it as a promising supplementary or alternative treatment. Although animal studies and preliminary clinical trials have shown positive outcomes with PBM, its clinical application remains in the exploratory phase. Future research should aim to elucidate the precise mechanisms of PBM, optimize light parameters, such as wavelength, dose, and frequency, and investigate potential synergistic effects with other therapeutic modalities. These efforts will be crucial for enhancing the therapeutic efficacy of PBM and ensuring its safety and consistency in clinical settings. This review summarizes the types of epilepsy, diagnostic biomarkers, the advantages of PBM, and its mechanisms and potential applications in epilepsy treatment. The unique value of PBM lies not only in its multi-target therapeutic effects but also in its adaptability to the diverse etiologies of epilepsy. The combination of PBM with traditional treatments, such as pharmacotherapy and neuroregulatory techniques, holds promise for developing a more comprehensive and multidimensional treatment strategy, ultimately alleviating the treatment burden on patients. PBM has also shown beneficial effects on neural network plasticity in various neurodegenerative diseases. The dynamic remodeling of neural networks plays a critical role in the pathogenesis and treatment of epilepsy, and PBM’s multi-target mechanism may promote brain function recovery by facilitating neural network remodeling. In this context, optimizing optical parameters remains a key area of research. By adjusting parameters such as wavelength, dose, and frequency, researchers aim to further enhance the therapeutic effects of PBM while maintaining its safety and stability. Looking forward, interdisciplinary collaboration, particularly in the fields of neuroscience, optical engineering, and clinical medicine, will drive the development of PBM technology and facilitate its transition from laboratory research to clinical application. With the advancement of portable devices, PBM is expected to provide safer and more effective treatments for epilepsy patients and make a significant contribution to personalized medicine, positioning it as a critical component of precision therapeutic strategies.
3.Clinical application of an artificial intelligence system in predicting benign or malignant pulmonary nodules and pathological subtypes
Zhuowen YANG ; Zhizhong ZHENG ; Bin LI ; Yiming HUI ; Mingzhi LIN ; Jiying DANG ; Suiyang LI ; Chunjiao ZHANG ; Long YANG ; Liang SI ; Tieniu SONG ; Yuqi MENG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(08):1086-1095
Objective To evaluate the predictive ability and clinical application value of artificial intelligence (AI) systems in the benign and malignant differentiation and pathological type of pulmonary nodules, and to summarize clinical application experience. Methods A retrospective analysis was conducted on the clinical data of patients with pulmonary nodules admitted to the Department of Thoracic Surgery, Second Hospital of Lanzhou University, from February 2016 to February 2025. Firstly, pulmonary nodules were divided into benign and non-benign groups, and the discriminative abilities of AI systems and clinicians were compared. Subsequently, lung nodules reported as precursor glandular lesions (PGL), microinvasive adenocarcinoma (MIA), and invasive adenocarcinoma (IAC) in postoperative pathological results were analyzed, comparing the efficacy of AI systems and clinicians in predicting the pathological type of pulmonary nodules. Results In the analysis of benign/non-benign pulmonary nodules, clinical data from a total of 638 patients with pulmonary nodules were included, of which there were 257 males (10 patients and 1 patient of double and triple primary lesions, respectively) and 381 females (18 patients and 1 patient of double and triple primary lesions, respectively), with a median age of 55.0 (47.0, 61.0) years. Different lesions in the same patient were analyzed as independent samples. Univariate analysis of the two groups of variables showed that, except for nodule location, the differences in the remaining variables were statistically significant (P<0.05). Multivariate logistic regression analysis showed that age, nodule type (subsolid pulmonary nodule), average density, spicule sign, and vascular convergence sign were independent influencing factors for non-benign pulmonary nodules, among which age, nodule type (subsolid pulmonary nodule), spicule sign, and vascular convergence sign were positively correlated with non-benign pulmonary nodules, while average density was negatively correlated with the occurrence of non-benign pulmonary nodules. The area under the receiver operating characteristic curve (AUC) of the malignancy risk value given by the AI system in predicting non-benign pulmonary nodules was 0.811, slightly lower than the 0.898 predicted by clinicians. In the PGL/MIA/IAC analysis, clinical data from a total of 411 patients with pulmonary nodules were included, of which there were 149 males (8 patients of double primary lesions) and 262 females (17 patients of double primary lesions), with a median age of 56.0 (50.0, 61.0) years. Different lesions in the same patient were analyzed as independent samples. Univariate analysis results showed that, except for gender, nodule location, and vascular convergence sign, the differences in the remaining variables among the three groups of PGL, MIA, and IAC patients were statistically significant (P<0.05). Multinomial multivariate logistic regression analysis showed that the differences between the parameters in the PGL group and the MIA group were not statistically significant (P>0.05), and the maximum diameter and average density of the nodules were statistically different between the PGL and IAC groups (P<0.05), and were positively correlated with the occurrence of IAC as independent risk factors. The average AUC value, accuracy, recall rate, and F1 score of the AI system in predicting lung nodule pathological type were 0.807, 74.3%, 73.2%, and 68.5%, respectively, all better than the clinical physicians’ prediction of lung nodule pathological type indicators (0.782, 70.9%, 66.2%, and 63.7% respectively). The AUC value of the AI system in predicting IAC was 0.853, and the sensitivity, specificity, and optimal cutoff value were 0.643, 0.943, and 50.0%, respectively. Conclusion This AI system has demonstrated high clinical value in predicting the benign and malignant nature and pathological type of lung nodules, especially in predicting lung nodule pathological type, its ability has surpassed that of clinical physicians. With the optimization of algorithms and the adequate integration of multimodal data, it can better assist clinical physicians in formulating individualized diagnostic and treatment plans for patients with lung nodules.
4.Xinyang Tablets ameliorate ventricular remodeling in heart failure via FTO/m6A signaling pathway.
Dong-Hua LIU ; Zi-Ru LI ; Si-Jing LI ; Xing-Ling HE ; Xiao-Jiao ZHANG ; Shi-Hao NI ; Wen-Jie LONG ; Hui-Li LIAO ; Zhong-Qi YANG ; Xiao-Ming DONG
China Journal of Chinese Materia Medica 2025;50(4):1075-1086
The study was conducted to investigate the mechanism of Xinyang Tablets( XYP) in modulating the fat mass and obesity-associated protein(FTO)/N6-methyladenosine(m6A) signaling pathway to ameliorate ventricular remodeling in heart failure(HF). A mouse model of HF was established by transverse aortic constriction(TAC). Mice were randomized into sham, model, XYP(low, medium, and high doses), and positive control( perindopril) groups(n= 10). From day 3 post-surgery, mice were administrated with corresponding drugs by gavage for 6 consecutive weeks. Following the treatment, echocardiography was employed to evaluate the cardiac function, and RT-qPCR was employed to determine the relative m RNA levels of key markers, including atrial natriuretic peptide( ANP), B-type natriuretic peptide( BNP), β-myosin heavy chain(β-MHC), collagen type I alpha chain(Col1α), collagen type Ⅲ alpha chain(Col3α), alpha smooth muscle actin(α-SMA), and FTO. The cardiac tissue was stained with Masson's trichrome and wheat germ agglutinin(WGA) to reveal the pathological changes. Immunohistochemistry was employed to detect the expression levels of Col1α, Col3α, α-SMA, and FTO in the myocardial tissue. The m6A modification level in the myocardial tissue was measured by the m6A assay kit. An H9c2 cell model of cardiomyocyte injury was induced by angiotensin Ⅱ(AngⅡ), and small interfering RNA(siRNA) was employed to knock down FTO expression. RT-qPCR was conducted to assess the relative m RNA levels of FTO and other genes associated with cardiac remodeling. The m6A modification level was measured by the m6A assay kit, and Western blot was employed to determine the phosphorylated phosphatidylinositol 3-kinase(p-PI3K)/phosphatidylinositol 3-kinase(PI3K) and phosphorylated serine/threonine kinase(p-Akt)/serine/threonine kinase(Akt) ratios in cardiomyocytes. The results of animal experiments showed that the XYP treatment significantly improved the cardiac function, reduced fibrosis, up-regulated the m RNA and protein levels of FTO, and lowered the m6A modification level compared with the model group. The results of cell experiments showed that the XYP-containing serum markedly up-regulated the m RNA level of FTO while decreasing the m6A modification level and the p-PI3K/PI3K and p-Akt/Akt ratios in cardiomyocytes. Furthermore, FTO knockdown reversed the protective effects of XYP-containing serum on Ang Ⅱ-induced cardiomyocyte hypertrophy. In conclusion, XYP may ameliorate ventricular remodeling by regulating the FTO/m6A axis, thereby inhibiting the activation of the PI3K/Akt signaling pathway.
Animals
;
Ventricular Remodeling/drug effects*
;
Heart Failure/physiopathology*
;
Signal Transduction/drug effects*
;
Mice
;
Male
;
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice, Inbred C57BL
;
Humans
;
Adenosine/analogs & derivatives*
;
Myocytes, Cardiac/metabolism*
;
Disease Models, Animal
5.Verification of resveratrol ameliorating vascular endothelial damage in sepsis-associated encephalopathy through HIF-1α pathway based on network pharmacology and experiment.
Rong LI ; Yue WU ; Wen-Xuan ZHU ; Meng QIN ; Si-Yu SUN ; Li-Ya WANG ; Mei-Hui TIAN ; Ying YU
China Journal of Chinese Materia Medica 2025;50(4):1087-1097
This study aims to investigate the mechanism by which resveratrol(RES) alleviates cerebral vascular endothelial damage in sepsis-associated encephalopathy(SAE) through network pharmacology and animal experiments. By using network pharmacology, the study identified common targets and genes associated with RES and SAE and constructed a protein-protein interaction( PPI) network. Gene Ontology(GO) analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis were performed to pinpoint key signaling pathways, followed by molecular docking validation. In the animal experiments, a cecum ligation and puncture(CLP) method was employed to induce SAE in mice. The mice were randomly assigned to the sham group, CLP group, and medium-dose and high-dose groups of RES. The sham group underwent open surgery without CLP, and the CLP group received an intraperitoneal injection of 0. 9% sodium chloride solution after surgery. The medium-dose and high-dose groups of RES were injected intraperitoneally with 40 mg·kg-1 and 60 mg·kg~(-1) of RES after modeling, respectively, and samples were collected 12 hours later. Neurological function scores were assessed, and the wet-dry weight ratio of brain tissue was detected. Serum superoxide dismutase(SOD), catalase( CAT) activity, and malondialdehyde( MDA) content were measured by oxidative stress kit. Histopathological changes in brain tissue were examined using hematoxylin-eosin(HE) staining. Transmission electron microscopy was employed to evaluate tight cell junctions and mitochondrial ultrastructure changes in cerebral vascular endothelium. Western blot analysis was performed to detect the expression of zonula occludens1( ZO-1), occludin, claudins-5, optic atrophy 1( OPA1), mitofusin 2(Mfn2), dynamin-related protein 1(Drp1), fission 1(Fis1), and hypoxia-inducible factor-1α(HIF-1α). Network pharmacology identified 76 intersecting targets for RES and SAE, with the top five core targets being EGFR, PTGS2, ESR1, HIF-1α, and APP. GO enrichment analysis showed that RES participated in the SAE mechanism through oxidative stress reaction. KEGG enrichment analysis indicated that RES participated in SAE therapy through HIF-1α, Rap1, and other signaling pathways. Molecular docking results showed favorable docking activity between RES and key targets such as HIF-1α. Animal experiment results demonstrated that compared to the sham group, the CLP group exhibited reduced nervous reflexes, decreased water content in brain tissue, as well as serum SOD and CAT activity, and increased MDA content. In addition, the CLP group exhibited disrupted tight junctions in cerebral vascular endothelium and abnormal mitochondrial morphology. The protein expression levels of Drp1, Fis1, and HIF-1α in brain tissue were increased, while those of ZO-1, occludin, claudin-5, Mfn2, and OPA1 were decreased. In contrast, the medium-dose and high-dose groups of RES showed improved neurological function, increased water content in brain tissue and SOD and CAT activity, and decreased MDA content. Cell morphology in brain tissue, tight junctions between endothelial cells, and mitochondrial structure were improved. The protein expressions of Drp1, Fis1, and HIF-1α were decreased, while those of ZO-1, occludin, claudin-5, Mfn2, and OPA1 were increased. This study suggested that RES could ameliorate cerebrovascular endothelial barrier function and maintain mitochondrial homeostasis by inhibiting oxidative stress after SAE damage, potentially through modulation of the HIF-1α signaling pathway.
Animals
;
Mice
;
Network Pharmacology
;
Resveratrol/administration & dosage*
;
Male
;
Sepsis-Associated Encephalopathy/genetics*
;
Signal Transduction/drug effects*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Endothelium, Vascular/metabolism*
;
Molecular Docking Simulation
;
Protein Interaction Maps/drug effects*
;
Humans
;
Sepsis/complications*
;
Oxidative Stress/drug effects*
6.Efficacy and mechanism of Cistanches Herba extract in treating reproductive dysfunction in rats with kidney-Yang deficiency based on metabolomics.
Ze-Hui LI ; Pan-Yu XU ; Jia-Shan LI ; Li GUO ; Yuan LI ; Si-Qi LI ; Na LIN ; Ying XU
China Journal of Chinese Materia Medica 2025;50(7):1850-1860
This study investigates the reproductive protective effect and potential mechanism of Cistanches Herba extract(CHE) on a rat model of kidney-Yang deficiency induced by adenine. Rats were randomly divided into five groups: normal, model, low-dose CHE(0.6 g·kg~(-1)·d~(-1)), high-dose CHE(1.2 g·kg~(-1)·d~(-1)), and L-carnitine(100 mg·kg~(-1)·d~(-1)). The rats were administered adenine(200 mg·kg~(-1)·d~(-1)) by gavage for the first 14 days to induce kidney-Yang deficiency, while simultaneously receiving drug treatment. After 14 days, the modeling was discontinued, but drug treatment continued to 49 days. The content of components in CHE was analyzed by high-performance liquid chromatography. The adenine-induced kidney-Yang deficiency model was assessed through symptom characterization and measurement of testosterone(T) levels using an enzyme-linked immunosorbent assay kit. Pathological damage to the testis and epididymis was evaluated based on the wet weight and performing hematoxylin-eosin staining. Sperm density and motility were measured using computer-aided sperm analysis, and sperm viability was assessed using live/dead sperm staining kits, and sperm morphology was evaluated using eosin staining, thereby determining rat sperm quality. Metabolomics was used to analyze changes in serum metabolites, enrich related metabolic pathways, and explore the mechanism of CHE in improving reproductive function damage in rats with kidney-Yang deficiency syndrome. Compared to the normal group, the model group exhibited significant kidney-Yang deficiency symptoms, reduced T levels, decreased testicular and epididymal wet weights, and significant pathological damage to the testis and epididymis. The sperm density, motility, and viability decreased, with an increased rate of sperm abnormalities. In contrast, rats treated with CHE showed marked improvements in kidney-Yang deficiency symptoms, restored T levels, alleviated pathological damage to the testis and epididymis, and improved various sperm parameters. Metabolomics results revealed 286 differential metabolites between the normal and model groups(191 upregulated and 95 downregulated). Seventy-five differential metabolites were identified between the model and low-dose CHE groups(21 upregulated and 54 downregulated). A total of 24 common differential metabolites were identified across the three groups, with 22 of these metabolites exhibiting opposite regulation trends between the two comparison groups. These metabolites were primarily involved in linoleic acid metabolism, ether lipid metabolism, and pantothenic acid and coenzyme A biosynthesis, as well as metabolites including 13-hydroperoxylinoleic acid, lysophosphatidylcholine, and pantethine. CHE can improve kidney-Yang deficiency symptoms in rats, alleviate reproductive organ damage, and enhance sperm quality. The regulation of lipid metabolism may be a potential mechanism through which CHE improves reproductive function in rats with kidney-Yang deficiency. The potential bioactive compounds of CHE include echinacoside, verbascoside, salidroside, betaine, and cistanoside A.
Animals
;
Male
;
Rats
;
Yang Deficiency/physiopathology*
;
Metabolomics
;
Kidney/physiopathology*
;
Rats, Sprague-Dawley
;
Drugs, Chinese Herbal/administration & dosage*
;
Cistanche/chemistry*
;
Kidney Diseases/metabolism*
;
Testis/metabolism*
;
Humans
;
Reproduction/drug effects*
;
Testosterone/blood*
7.Heart Yin deficiency and cardiac fibrosis: from pathological mechanisms to therapeutic strategies.
Jia-Hui CHEN ; Si-Jing LI ; Xiao-Jiao ZHANG ; Zi-Ru LI ; Xing-Ling HE ; Xing-Ling CHEN ; Tao-Chun YE ; Zhi-Ying LIU ; Hui-Li LIAO ; Lu LU ; Zhong-Qi YANG ; Shi-Hao NI
China Journal of Chinese Materia Medica 2025;50(7):1987-1993
Cardiac fibrosis(CF) is a cardiac pathological process characterized by excessive deposition of extracellular matrix(ECM). When the heart is damaged by adverse stimuli, cardiac fibroblasts are activated and secrete a large amount of ECM, leading to changes in cardiac fibrosis, myocardial stiffness, and cardiac function declines and accelerating the development of heart failure. There is a close relationship between heart yin deficiency and cardiac fibrosis, which have similar pathogenic mechanisms. Heart Yin deficiency, characterized by insufficient Yin fluids, causes the heart to lose its nourishing function, which acts as the initiating factor for myocardial dystrophy. The deficiency of body fluids leads to stagnation of blood flow, resulting in blood stasis and water retention. Blood stasis and water retention accumulate in the heart, which aligns with the pathological manifestation of excessive deposition of ECM, as a tangible pathogenic factor. This is an inevitable stage of the disease process. The lingering of blood stasis combined with water retention eventually leads to the generation of heat and toxins, triggering inflammatory responses similar to heat toxins, which continuously stimulate the heart and cause the ultimate outcome of CF. Considering the syndrome of heart Yin deficiency, traditional Chinese medicine capable of nourishing Yin, activating blood, and promoting urination can reduce myocardial cell apoptosis, inhibit fibroblast activation, and lower the inflammation level, showing significant advantages in combating CF.
Humans
;
Fibrosis/drug therapy*
;
Animals
;
Yin Deficiency/metabolism*
;
Myocardium/metabolism*
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/therapeutic use*
8.Efficacy and mechanism of Guizhi Tongluo Tablets in alleviating atherosclerosis by inhibiting CD72hi macrophages.
Xing-Ling HE ; Si-Jing LI ; Zi-Ru LI ; Dong-Hua LIU ; Xiao-Jiao ZHANG ; Huan HE ; Xiao-Ming DONG ; Wen-Jie LONG ; Wei-Wei ZHANG ; Hui-Li LIAO ; Lu LU ; Zhong-Qi YANG ; Shi-Hao NI
China Journal of Chinese Materia Medica 2025;50(5):1298-1309
This study investigates the effect and underlying mechanism of Guizhi Tongluo Tablets(GZTL) in treating atherosclerosis(AS) in a mouse model. Apolipoprotein E-knockout(ApoE~(-/-)) mice were randomly assigned to the following groups: model, high-, medium-, and low-dose GZTL, and atorvastatin(ATV), and age-matched C57BL/6J mice were selected as the control group. ApoE~(-/-) mice in other groups except the control group were fed with a high-fat diet for the modeling of AS and administrated with corresponding drugs via gavage for 8 weeks. General conditions, signs of blood stasis, and body mass of mice were monitored. Aortic plaques and their stability were assessed by hematoxylin-eosin, Masson, and oil red O staining. Serum levels of total cholesterol(TC), triglycerides(TG), and low-density lipoprotein cholesterol(LDL-C) were measured by biochemical assays, and those of interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6) were determined via enzyme-linked immunosorbent assay. Apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL). Single-cell RNA sequencing(scRNA-seq) was employed to analyze the differential expression of CD72hi macrophages(CD72hi-Mφ) in the aortas of AS patients and mice. The immunofluorescence assay was employed to visualize CD72hi-Mφ expression in mouse aortic plaques, and real-time fluorescence quantitative PCR was utilized to determine the mRNA levels of IL-1β, TNF-α, and IL-6 in the aorta. The results demonstrated that compared with the control group, the model group exhibited significant increases in body mass, aortic plaque area proportion, necrotic core area proportion, and lipid deposition, a notable decrease in collagen fiber content, and an increase in apoptosis. Additionally, the model group showcased elevated serum levels of TC, TG, LDL-C, IL-1β, TNF-α, and IL-6, alongside marked upregulations in the mRNA levels of IL-1β, TNF-α, and IL-6 in the aorta. In comparison with the model group, the GZTL groups and the ATV group showed a reduction in body mass, and the medium-and high-dose GZTL groups and the ATV group demonstrated reductions in aortic plaque area proportion, necrotic core area proportion, and lipid deposition, an increase in collagen fiber content, and a decrease in apoptosis. Furthermore, the treatment goups showcased lowered serum levels of TC, TG, LDL-C, IL-1β, TNF-α, and IL-6. The data of scRNA-seq revealed significantly elevated CD72hi-Mφ signaling in carotid plaques of AS patients compared with that in the normal arterial tissue. Animal experiments confirmed that CD72hi-Mφ expression, along with several pro-inflammatory cytokines, was significantly upregulated in the aortas of AS mice, which were downregulated by GZTL treatment. In conclusion, GZTL may alleviate AS by inhibiting CD72hi-Mφ activity.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Atherosclerosis/immunology*
;
Mice
;
Mice, Inbred C57BL
;
Macrophages/immunology*
;
Male
;
Humans
;
Apolipoproteins E/genetics*
;
Tablets
;
Tumor Necrosis Factor-alpha/genetics*
;
Apoptosis/drug effects*
;
Interleukin-1beta/genetics*
;
Interleukin-6/genetics*
;
Disease Models, Animal
;
Mice, Knockout
9.Randomized, double-blind, parallel-controlled, multicenter, equivalence clinical trial of Jiuwei Xifeng Granules(Os Draconis replaced by Ostreae Concha) for treating tic disorder in children.
Qiu-Han CAI ; Cheng-Liang ZHONG ; Si-Yuan HU ; Xin-Min LI ; Zhi-Chun XU ; Hui CHEN ; Ying HUA ; Jun-Hong WANG ; Ji-Hong TANG ; Bing-Xiang MA ; Xiu-Xia WANG ; Ai-Zhen WANG ; Meng-Qing WANG ; Wei ZHANG ; Chun WANG ; Yi-Qun TENG ; Yi-Hui SHAN ; Sheng-Xuan GUO
China Journal of Chinese Materia Medica 2025;50(6):1699-1705
Jiuwei Xifeng Granules have become a Chinese patent medicine in the market. Because the formula contains Os Draconis, a top-level protected fossil of ancient organisms, the formula was to be improved by replacing Os Draconis with Ostreae Concha. To evaluate whether the improved formula has the same effectiveness and safety as the original formula, a randomized, double-blind, parallel-controlled, equivalence clinical trial was conducted. This study enrolled 288 tic disorder(TD) of children and assigned them into two groups in 1∶1. The treatment group and control group took the modified formula and original formula, respectively. The treatment lasted for 6 weeks, and follow-up visits were conducted at weeks 2, 4, and 6. The primary efficacy endpoint was the difference in Yale global tic severity scale(YGTSS)-total tic severity(TTS) score from baseline after 6 weeks of treatment. The results showed that after 6 weeks of treatment, the declines in YGTSS-TSS score showed no statistically significant difference between the two groups. The difference in YGTSS-TSS score(treatment group-control group) and the 95%CI of the full analysis set(FAS) were-0.17[-1.42, 1.08] and those of per-protocol set(PPS) were 0.29[-0.97, 1.56], which were within the equivalence boundary [-3, 3]. The equivalence test was therefore concluded. The two groups showed no significant differences in the secondary efficacy endpoints of effective rate for TD, total score and factor scores of YGTSS, clinical global impressions-severity(CGI-S) score, traditional Chinese medicine(TCM) response rate, or symptom disappearance rate, and thus a complete evidence chain with the primary outcome was formed. A total of 6 adverse reactions were reported, including 4(2.82%) cases in the treatment group and 2(1.41%) cases in the control group, which showed no statistically significant difference between the two groups. No serious suspected unexpected adverse reactions were reported, and no laboratory test results indicated serious clinically significant abnormalities. The results support the replacement of Os Draconis by Ostreae Concha in the original formula, and the efficacy and safety of the modified formula are consistent with those of the original formula.
Adolescent
;
Child
;
Child, Preschool
;
Female
;
Humans
;
Male
;
Double-Blind Method
;
Drugs, Chinese Herbal/therapeutic use*
;
Tic Disorders/drug therapy*
;
Treatment Outcome
10.Qualitative and quantitative analysis of chemical components of different processed products of Corni Fructus by UPLC-Q-TOF-MS and UPLC-QqQ-MS/MS.
Li-Qiang ZHANG ; Guo-Shun SHAN ; Yi-Dan HONG ; Si-Han LIU ; Guo-Wei XU ; Hui GAO ; Wei WANG ; Cheng-Guo JU
China Journal of Chinese Materia Medica 2025;50(8):2145-2158
Qualitative and quantitative analysis methods for chemical components of different processed products of Corni Fructus were established to systematically characterize and identify these components, and the content of the main differential components was determined. The chemical components of different processed products of Corni Fructus were collected using ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS). Through analysis of self-built databases, literature, and reference standards, a total of 93 components were obtained, including 19 iridoids, 15 flavonoids, 16 organic acids, eight triterpenoids, eight tannins, four amino acids, two polysaccharides, five olefins, and 16 other compounds. Additionally, by using multivariate statistical methods, the differential components between different processed products of Corni Fructus were screened under the conditions of VIP>1.0 and FC<0.5 or FC>2.0 and P<0.05. The PCA and OPLS-DA results showed differences in the chemical components between different processed products of Corni Fructus. A total of 21 differential components were screened, including tartaric acid, morroniside, and rutin. On this basis, ultra-high performance liquid chromatography-triple quadrupole tandem mass spectrometry(UPLC-QqQ-MS/MS) was used to determine the content of 10 main common differential components, including gallic acid, morroniside, ursolic acid, loganin, swertiamarin, rutin, 5-hydroxymethylfurfural, cornuside Ⅰ, quercetin, and oleanolic acid. The above 10 components showed a good linear relationship within the determined concentration range, with the precision, stability, repeatability, and sample recovery rate all meeting the requirements. Compared with that in Corni Fructus, the content of iridoid glycosides in wine-prepared Corni Fructus and wine-and honey-prepared Corni Fructus decreased, while the content of gallic acid, rutin, quercetin, 5-hydroxymethylfurfural, ursolic acid, and oleanolic acid increased. Compared with wine-prepared Corni Fructus, wine-and honey-prepared Corni Fructus showed varying degrees of increase in all other components, except for a slight decrease in gallic acid content. In summary, this study clarified the influence of different processing methods on the chemical components of Corni Fructus, providing a theoretical basis for the scientific connotation, overall quality evaluation, and clinically rational application of Corni Fructus processing in the future.
Tandem Mass Spectrometry/methods*
;
Chromatography, High Pressure Liquid/methods*
;
Cornus/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Fruit/chemistry*

Result Analysis
Print
Save
E-mail