1.Anatomical Importance Between Neural Structure and Bony Landmark in Neuroventral Decompression for Posterior Endoscopic Cervical Discectomy
Xin WANG ; Tao HU ; Chaofan QIN ; Bo LEI ; Mingxin CHEN ; Ke MA ; Qingyan LONG ; Qingshuai YU ; Si CHENG ; Zhengjian YAN
Neurospine 2025;22(1):286-296
Objective:
This study aims to investigate the anatomical relationship among the nerve roots, intervertebral space, pedicles, and intradural rootlets of the cervical spine for improving operative outcomes and exploring neuroventral decompression approach in posterior endoscopic cervical discectomy (PECD).
Methods:
Cervical computed tomography myelography imaging data from January 2021 to May 2023 were collected, and the RadiAnt DICOM Viewer Software was employed to conduct multiplane reconstruction. The following parameters were recorded: width of nerve root (WN), nerve root-superior pedicle distance (NSPD), nerve root-inferior pedicle distance (NIPD), and the relationship between the intervertebral space and the nerve root (shoulder, anterior, and axillary). Additionally, the descending angles between the spinal cord and the ventral (VRA) and dorsal (DRA) rootlets were measured.
Results:
The WN showed a gradual increase from C4 to C7, with measurements notably larger in men compared to women. The NSPD decreased gradually from the C2–3 to the C5–6 levels. However, the NIPD showed an opposite level-related change, notably larger than the NSPD at the C4–5, C5–6, and C7–T1 levels. Furthermore, significant differences in NIPD were observed between different age groups and genders. The incidence of the anterior type exhibited a gradual decrease from the C2–3 to the C5–6 levels. Conversely, the axillary type exhibited an opposite level-related change. Additionally, the VRA and DRA decreased as the level descended, with measurements significantly larger in females.
Conclusion
A prediction of the positional relationship between the intervertebral space and the nerve root is essential for the direct neuroventral decompression in PECD to avoid damaging the neural structures. The axillary route of the nerve root offers a safer and more effective pathway for performing direct neuroventral decompression compared to the shoulder approach.
2.Anatomical Importance Between Neural Structure and Bony Landmark in Neuroventral Decompression for Posterior Endoscopic Cervical Discectomy
Xin WANG ; Tao HU ; Chaofan QIN ; Bo LEI ; Mingxin CHEN ; Ke MA ; Qingyan LONG ; Qingshuai YU ; Si CHENG ; Zhengjian YAN
Neurospine 2025;22(1):286-296
Objective:
This study aims to investigate the anatomical relationship among the nerve roots, intervertebral space, pedicles, and intradural rootlets of the cervical spine for improving operative outcomes and exploring neuroventral decompression approach in posterior endoscopic cervical discectomy (PECD).
Methods:
Cervical computed tomography myelography imaging data from January 2021 to May 2023 were collected, and the RadiAnt DICOM Viewer Software was employed to conduct multiplane reconstruction. The following parameters were recorded: width of nerve root (WN), nerve root-superior pedicle distance (NSPD), nerve root-inferior pedicle distance (NIPD), and the relationship between the intervertebral space and the nerve root (shoulder, anterior, and axillary). Additionally, the descending angles between the spinal cord and the ventral (VRA) and dorsal (DRA) rootlets were measured.
Results:
The WN showed a gradual increase from C4 to C7, with measurements notably larger in men compared to women. The NSPD decreased gradually from the C2–3 to the C5–6 levels. However, the NIPD showed an opposite level-related change, notably larger than the NSPD at the C4–5, C5–6, and C7–T1 levels. Furthermore, significant differences in NIPD were observed between different age groups and genders. The incidence of the anterior type exhibited a gradual decrease from the C2–3 to the C5–6 levels. Conversely, the axillary type exhibited an opposite level-related change. Additionally, the VRA and DRA decreased as the level descended, with measurements significantly larger in females.
Conclusion
A prediction of the positional relationship between the intervertebral space and the nerve root is essential for the direct neuroventral decompression in PECD to avoid damaging the neural structures. The axillary route of the nerve root offers a safer and more effective pathway for performing direct neuroventral decompression compared to the shoulder approach.
3.Anatomical Importance Between Neural Structure and Bony Landmark in Neuroventral Decompression for Posterior Endoscopic Cervical Discectomy
Xin WANG ; Tao HU ; Chaofan QIN ; Bo LEI ; Mingxin CHEN ; Ke MA ; Qingyan LONG ; Qingshuai YU ; Si CHENG ; Zhengjian YAN
Neurospine 2025;22(1):286-296
Objective:
This study aims to investigate the anatomical relationship among the nerve roots, intervertebral space, pedicles, and intradural rootlets of the cervical spine for improving operative outcomes and exploring neuroventral decompression approach in posterior endoscopic cervical discectomy (PECD).
Methods:
Cervical computed tomography myelography imaging data from January 2021 to May 2023 were collected, and the RadiAnt DICOM Viewer Software was employed to conduct multiplane reconstruction. The following parameters were recorded: width of nerve root (WN), nerve root-superior pedicle distance (NSPD), nerve root-inferior pedicle distance (NIPD), and the relationship between the intervertebral space and the nerve root (shoulder, anterior, and axillary). Additionally, the descending angles between the spinal cord and the ventral (VRA) and dorsal (DRA) rootlets were measured.
Results:
The WN showed a gradual increase from C4 to C7, with measurements notably larger in men compared to women. The NSPD decreased gradually from the C2–3 to the C5–6 levels. However, the NIPD showed an opposite level-related change, notably larger than the NSPD at the C4–5, C5–6, and C7–T1 levels. Furthermore, significant differences in NIPD were observed between different age groups and genders. The incidence of the anterior type exhibited a gradual decrease from the C2–3 to the C5–6 levels. Conversely, the axillary type exhibited an opposite level-related change. Additionally, the VRA and DRA decreased as the level descended, with measurements significantly larger in females.
Conclusion
A prediction of the positional relationship between the intervertebral space and the nerve root is essential for the direct neuroventral decompression in PECD to avoid damaging the neural structures. The axillary route of the nerve root offers a safer and more effective pathway for performing direct neuroventral decompression compared to the shoulder approach.
4.Anatomical Importance Between Neural Structure and Bony Landmark in Neuroventral Decompression for Posterior Endoscopic Cervical Discectomy
Xin WANG ; Tao HU ; Chaofan QIN ; Bo LEI ; Mingxin CHEN ; Ke MA ; Qingyan LONG ; Qingshuai YU ; Si CHENG ; Zhengjian YAN
Neurospine 2025;22(1):286-296
Objective:
This study aims to investigate the anatomical relationship among the nerve roots, intervertebral space, pedicles, and intradural rootlets of the cervical spine for improving operative outcomes and exploring neuroventral decompression approach in posterior endoscopic cervical discectomy (PECD).
Methods:
Cervical computed tomography myelography imaging data from January 2021 to May 2023 were collected, and the RadiAnt DICOM Viewer Software was employed to conduct multiplane reconstruction. The following parameters were recorded: width of nerve root (WN), nerve root-superior pedicle distance (NSPD), nerve root-inferior pedicle distance (NIPD), and the relationship between the intervertebral space and the nerve root (shoulder, anterior, and axillary). Additionally, the descending angles between the spinal cord and the ventral (VRA) and dorsal (DRA) rootlets were measured.
Results:
The WN showed a gradual increase from C4 to C7, with measurements notably larger in men compared to women. The NSPD decreased gradually from the C2–3 to the C5–6 levels. However, the NIPD showed an opposite level-related change, notably larger than the NSPD at the C4–5, C5–6, and C7–T1 levels. Furthermore, significant differences in NIPD were observed between different age groups and genders. The incidence of the anterior type exhibited a gradual decrease from the C2–3 to the C5–6 levels. Conversely, the axillary type exhibited an opposite level-related change. Additionally, the VRA and DRA decreased as the level descended, with measurements significantly larger in females.
Conclusion
A prediction of the positional relationship between the intervertebral space and the nerve root is essential for the direct neuroventral decompression in PECD to avoid damaging the neural structures. The axillary route of the nerve root offers a safer and more effective pathway for performing direct neuroventral decompression compared to the shoulder approach.
5.Anatomical Importance Between Neural Structure and Bony Landmark in Neuroventral Decompression for Posterior Endoscopic Cervical Discectomy
Xin WANG ; Tao HU ; Chaofan QIN ; Bo LEI ; Mingxin CHEN ; Ke MA ; Qingyan LONG ; Qingshuai YU ; Si CHENG ; Zhengjian YAN
Neurospine 2025;22(1):286-296
Objective:
This study aims to investigate the anatomical relationship among the nerve roots, intervertebral space, pedicles, and intradural rootlets of the cervical spine for improving operative outcomes and exploring neuroventral decompression approach in posterior endoscopic cervical discectomy (PECD).
Methods:
Cervical computed tomography myelography imaging data from January 2021 to May 2023 were collected, and the RadiAnt DICOM Viewer Software was employed to conduct multiplane reconstruction. The following parameters were recorded: width of nerve root (WN), nerve root-superior pedicle distance (NSPD), nerve root-inferior pedicle distance (NIPD), and the relationship between the intervertebral space and the nerve root (shoulder, anterior, and axillary). Additionally, the descending angles between the spinal cord and the ventral (VRA) and dorsal (DRA) rootlets were measured.
Results:
The WN showed a gradual increase from C4 to C7, with measurements notably larger in men compared to women. The NSPD decreased gradually from the C2–3 to the C5–6 levels. However, the NIPD showed an opposite level-related change, notably larger than the NSPD at the C4–5, C5–6, and C7–T1 levels. Furthermore, significant differences in NIPD were observed between different age groups and genders. The incidence of the anterior type exhibited a gradual decrease from the C2–3 to the C5–6 levels. Conversely, the axillary type exhibited an opposite level-related change. Additionally, the VRA and DRA decreased as the level descended, with measurements significantly larger in females.
Conclusion
A prediction of the positional relationship between the intervertebral space and the nerve root is essential for the direct neuroventral decompression in PECD to avoid damaging the neural structures. The axillary route of the nerve root offers a safer and more effective pathway for performing direct neuroventral decompression compared to the shoulder approach.
6.Significance of precise classification of sacral meningeal cysts by multiple dimensions radiographic reconstruction MRI in guiding operative strategy and rehabilitation.
Jianjun SUN ; Qianquan MA ; Xiaoliang YIN ; Chenlong YANG ; Jia ZHANG ; Suhua CHEN ; Chao WU ; Jingcheng XIE ; Yunfeng HAN ; Guozhong LIN ; Yu SI ; Jun YANG ; Haibo WU ; Qiang ZHAO
Journal of Peking University(Health Sciences) 2025;57(2):303-308
OBJECTIVE:
To precise classify sacral meningeal cysts, effective guide minimally invasive neurosurgery and postoperative personalized rehabilitation by multiple dimensions radiographic reconstruction MRI.
METHODS:
From March to December 2021, based on the original 3D-fast imaging employing steadystate acquisition (FIESTA) scanning sequence, 92 patients with sacral meningeal cysts were pre-operatively evaluated by multiple dimensional reconstruction MRI. The shape of nerve root and the leakage of cyst were reconstructed according to the direction of nerve root or leakage track showed on original MRI scans. Sacral canal cysts were accurately classified as including nerve root and without nerve root, so as to accurately design the incision of skin and formulate corresponding open range of the posterior wall of the sacral canal. Under the microscope intraoperation, the shape of the nerve roots inside cysts or leakage track of the cysts without nerve roots were verified and explored. After the reinforcement and shaping operation, several reexaminations of multiple dimensional reconstruction MRI were performed to understand the deformation of the nerve root and hydrops in the operation cavity, so as to formulate a persona-lized rehabilitation plan for the patients.
RESULTS:
Among the 92 patients with sacral mengingeal cyst, 58 (63.0%) cysts with nerve root cyst, 29 (31.5%) cysts without nerve root cyst, and 5 (5.4%) cysts with mixed sacral canal cyst. In 58 patients with nerve root cysts, the accuracy of preoperative clinical classification on MRI image reached 96.6% (56/58) through confirmation by operating microscope. Only 2 cases of large single cyst with nerve root on the head of cyst were mistaken for without nerve root type. In 29 patients with sacral cyst without nerve root, the accuracy of preoperative image reached 100% through confirmation by operating microscope. The accuracy of judging the internal nerve root and leakage of 12 cases with recurrent sacral cyst was also 100%. Two cases of delayed postoperative hydrops were found one month after operation. After rehabilitation treatment by moxibustion and bathing, the hydrops disappeared 4-6 months after operation.
CONCLUSION
Multiple dimensional reconstruction MRI can precisely make clinical classification of sacral meningeal cysts before operation, guide minimally invasive neurosurgery effectively, and improve the rehabilitation effect.
Humans
;
Magnetic Resonance Imaging/methods*
;
Male
;
Female
;
Sacrum/surgery*
;
Adult
;
Middle Aged
;
Imaging, Three-Dimensional/methods*
;
Cysts/rehabilitation*
;
Aged
;
Adolescent
;
Young Adult
;
Spinal Nerve Roots/diagnostic imaging*
;
Minimally Invasive Surgical Procedures
;
Neurosurgical Procedures/methods*
7.Three-dimensional Heterogeneity and Intrinsic Plasticity of the Projection from the Cerebellar Interposed Nucleus to the Ventral Tegmental Area.
Chen WANG ; Si-Yu WANG ; Kuang-Yi MA ; Zhao-Xiang WANG ; Fang-Xiao XU ; Zhi-Ying WU ; Yan GU ; Wei CHEN ; Ying SHEN ; Li-Da SU ; Lin ZHOU
Neuroscience Bulletin 2025;41(1):159-164
8.Dorsal CA1 NECTIN3 Reduction Mediates Early-Life Stress-Induced Object Recognition Memory Deficits in Adolescent Female Mice.
Yu-Nu MA ; Chen-Chen ZHANG ; Ya-Xin SUN ; Xiao LIU ; Xue-Xin LI ; Han WANG ; Ting WANG ; Xiao-Dong WANG ; Yun-Ai SU ; Ji-Tao LI ; Tian-Mei SI
Neuroscience Bulletin 2025;41(2):243-260
Early-life stress (ES) leads to cognitive dysfunction in female adolescents, but the underlying neural mechanisms remain elusive. Recent evidence suggests that the cell adhesion molecules NECTIN1 and NECTIN3 play a role in cognition and ES-related cognitive deficits in male rodents. In this study, we aimed to investigate whether and how nectins contribute to ES-induced cognitive dysfunction in female adolescents. Applying the well-established limited bedding and nesting material paradigm, we found that ES impairs recognition memory, suppresses prefrontal NECTIN1 and hippocampal NECTIN3 expression, and upregulates corticotropin-releasing hormone (Crh) and its receptor 1 (Crhr1) mRNA levels in the hippocampus of adolescent female mice. Genetic experiments revealed that the reduction of dorsal CA1 (dCA1) NECTIN3 mediates ES-induced object recognition memory deficits, as knocking down dCA1 NECTIN3 impaired animals' performance in the novel object recognition task, while overexpression of dCA1 NECTIN3 successfully reversed the ES-induced deficits. Notably, prefrontal NECTIN1 knockdown did not result in significant cognitive impairments. Furthermore, acute systemic administration of antalarmin, a CRHR1 antagonist, upregulated hippocampal NECTIN3 levels and rescued object and spatial memory deficits in stressed mice. Our findings underscore the critical role of dCA1 NECTIN3 in mediating ES-induced object recognition memory deficits in adolescent female mice, highlighting it as a potential therapeutic target for stress-related psychiatric disorders in women.
Animals
;
Female
;
Mice
;
CA1 Region, Hippocampal/metabolism*
;
Cell Adhesion Molecules/metabolism*
;
CRF Receptor, Type 1/metabolism*
;
Memory Disorders/etiology*
;
Mice, Inbred C57BL
;
Nectins/genetics*
;
Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors*
;
Recognition, Psychology/physiology*
;
Stress, Psychological/complications*
9.Single-nucleus transcriptomics decodes the link between aging and lumbar disc herniation.
Min WANG ; Zan HE ; Anqi WANG ; Shuhui SUN ; Jiaming LI ; Feifei LIU ; Chunde LI ; Chengxian YANG ; Jinghui LEI ; Yan YU ; Shuai MA ; Si WANG ; Weiqi ZHANG ; Zhengrong YU ; Guang-Hui LIU ; Jing QU
Protein & Cell 2025;16(8):667-684
Lumbar disc (LD) herniation and aging are prevalent conditions that can result in substantial morbidity. This study aimed to clarify the mechanisms connecting the LD aging and herniation, particularly focusing on cellular senescence and molecular alterations in the nucleus pulposus (NP). We performed a detailed analysis of NP samples from a diverse cohort, including individuals of varying ages and those with diagnosed LD herniation. Our methodology combined histological assessments with single-nucleus RNA sequencing to identify phenotypic and molecular changes related to NP aging and herniation. We discovered that cellular senescence and a decrease in nucleus pulposus progenitor cells (NPPCs) are central to both processes. Additionally, we found an age-related increase in NFAT1 expression that promotes NPPC senescence and contributes to both aging and herniation of LD. This research offers fresh insights into LD aging and its associated pathologies, potentially guiding the development of new therapeutic strategies to target the root causes of LD herniation and aging.
Intervertebral Disc Displacement/metabolism*
;
Humans
;
Aging/pathology*
;
Nucleus Pulposus/pathology*
;
Male
;
Female
;
Transcriptome
;
Middle Aged
;
Lumbar Vertebrae/pathology*
;
Adult
;
Cellular Senescence
;
Stem Cells/pathology*
;
Aged
;
Intervertebral Disc Degeneration/metabolism*
10.The Role of Mechanical Sensitive Ion Channel Piezo in Digestive System Diseases
Si-Qi WANG ; Xiang-Yun YAN ; Yan-Qiu LI ; Fang-Li LUO ; Jun-Peng YAO ; Pei-Tao MA ; Yu-Jun HOU ; Hai-Yan QIN ; Yun-Zhou SHI ; Ying LI
Progress in Biochemistry and Biophysics 2024;51(8):1883-1894
The Piezo protein is a non-selective mechanosensitive cation channel that exhibits sensitivity to mechanical stimuli such as pressure and shear stress. It converts mechanical signals into bioelectric activity within cells, thus triggering specific biological responses. In the digestive system, Piezo protein plays a crucial role in maintaining normal physiological activities, including digestion, absorption, metabolic regulation, and immune modulation. However, dysregulation in Piezo protein expression may lead to the occurrence of several pathological conditions, including visceral hypersensitivity, impairment of intestinal mucosal barrier function, and immune inflammation.Therefore, conducting a comprehensive review of the physiological functions and pathological roles of Piezo protein in the digestive system is of paramount importance. In this review, we systematically summarize the structural and dynamic characteristics of Piezo protein, its expression patterns, and physiological functions in the digestive system. We particularly focus on elucidating the mechanisms of action of Piezo protein in digestive system tumor diseases, inflammatory diseases, fibrotic diseases, and functional disorders. Through the integration of the latest research findings, we have observed that Piezo protein plays a crucial role in the pathogenesis of various digestive system diseases. There exist intricate interactions between Piezo protein and multiple phenotypes of digestive system tumors such as proliferation, apoptosis, and metastasis. In inflammatory diseases, Piezo protein promotes intestinal immune responses and pancreatic trypsinogen activation, contributing to the development of ulcerative colitis, Crohn’s disease, and pancreatitis. Additionally, Piezo1, through pathways involving co-action with the TRPV4 ion channel, facilitates neutrophil recruitment and suppresses HIF-1α ubiquitination, thereby mediating organ fibrosis in organs like the liver and pancreas. Moreover, Piezo protein regulation by gut microbiota or factors like age and gender can result in increased or decreased visceral sensitivity, and alterations in intestinal mucosal barrier structure and permeability, which are closely associated with functional disorders like irritable bowel sydrome (IBS) and functional consitipaction (FC). A thorough exploration of Piezo protein as a potential therapeutic target in digestive system diseases can provide a scientific basis and theoretical support for future clinical diagnosis and treatment strategies.

Result Analysis
Print
Save
E-mail