1.The Use of Speech in Screening for Cognitive Decline in Older Adults
Si-Wen WANG ; Xiao-Xiao YIN ; Lin-Lin GAO ; Wen-Jun GUI ; Qiao-Xia HU ; Qiong LOU ; Qin-Wen WANG
Progress in Biochemistry and Biophysics 2025;52(2):456-463
Alzheimer’s disease (AD) is a chronic neurodegenerative disorder that severely affects the health of the elderly, marked by its incurability, high prevalence, and extended latency period. The current approach to AD prevention and treatment emphasizes early detection and intervention, particularly during the pre-AD stage of mild cognitive impairment (MCI), which provides an optimal “window of opportunity” for intervention. Clinical detection methods for MCI, such as cerebrospinal fluid monitoring, genetic testing, and imaging diagnostics, are invasive and costly, limiting their broad clinical application. Speech, as a vital cognitive output, offers a new perspective and tool for computer-assisted analysis and screening of cognitive decline. This is because elderly individuals with cognitive decline exhibit distinct characteristics in semantic and audio information, such as reduced lexical richness, decreased speech coherence and conciseness, and declines in speech rate, voice rhythm, and hesitation rates. The objective presence of these semantic and audio characteristics lays the groundwork for computer-based screening of cognitive decline. Speech information is primarily sourced from databases or collected through tasks involving spontaneous speech, semantic fluency, and reading, followed by analysis using computer models. Spontaneous language tasks include dialogues/interviews, event descriptions, narrative recall, and picture descriptions. Semantic fluency tasks assess controlled retrieval of vocabulary items, requiring participants to extract information at the word level during lexical search. Reading tasks involve participants reading a passage aloud. Summarizing past research, the speech characteristics of the elderly can be divided into two major categories: semantic information and audio information. Semantic information focuses on the meaning of speech across different tasks, highlighting differences in vocabulary and text content in cognitive impairment. Overall, discourse pragmatic disorders in AD can be studied along three dimensions: cohesion, coherence, and conciseness. Cohesion mainly examines the use of vocabulary by participants, with a reduction in the use of nouns, pronouns, verbs, and adjectives in AD patients. Coherence assesses the ability of participants to maintain topics, with a decrease in the number of subordinate clauses in AD patients. Conciseness evaluates the information density of participants, with AD patients producing shorter texts with less information compared to normal elderly individuals. Audio information focuses on acoustic features that are difficult for the human ear to detect. There is a significant degradation in temporal parameters in the later stages of cognitive impairment; AD patients require more time to read the same paragraph, have longer vocalization times, and produce more pauses or silent parts in their spontaneous speech signals compared to normal individuals. Researchers have extracted audio and speech features, developing independent systems for each set of features, achieving an accuracy rate of 82% for both, which increases to 86% when both types of features are combined, demonstrating the advantage of integrating audio and speech information. Currently, deep learning and machine learning are the main methods used for information analysis. The overall diagnostic accuracy rate for AD exceeds 80%, and the diagnostic accuracy rate for MCI also exceeds 80%, indicating significant potential. Deep learning techniques require substantial data support, necessitating future expansion of database scale and continuous algorithm upgrades to transition from laboratory research to practical product implementation.
2.Exercise Regulates Structural Plasticity and Neurogenesis of Hippocampal Neurons and Improves Memory Impairment in High-fat Diet-induced Obese Mice
Meng-Si YAN ; Lin-Jie SHU ; Chao-Ge WANG ; Ran CHENG ; Lian-Wei MU ; Jing-Wen LIAO
Progress in Biochemistry and Biophysics 2025;52(4):995-1007
ObjectiveObesity has been identified as one of the most important risk factors for cognitive dysfunction. Physical exercise can ameliorate learning and memory deficits by reversing synaptic plasticity in the hippocampus and cortex in diseases such as Alzheimer’s disease. In this study, we aimed to determine whether 8 weeks of treadmill exercise could alleviate hippocampus-dependent memory impairment in high-fat diet-induced obese mice and investigate the potential mechanisms involved. MethodsA total of sixty 6-week-old male C57BL/6 mice, weighing between 20-30 g, were randomly assigned to 3 distinct groups, each consisting of 20 mice. The groups were designated as follows: control (CON), high-fat diet (HFD), and high-fat diet with exercise (HFD-Ex). Prior to the initiation of the treadmill exercise protocol, the HFD and HFD-Ex groups were fed a high-fat diet (60% fat by kcal) for 20 weeks. The mice in the HFD-Ex group underwent treadmill exercise at a speed of 8 m/min for the first 10 min, followed by 12 m/min for the subsequent 50 min, totally 60 min of exercise at a 0° slope, 5 d per week, for 8 weeks. We employed Y-maze and novel object recognition tests to assess hippocampus-dependent memory and utilized immunofluorescence, Western blot, Golgi staining, and ELISA to analyze axon length, dendritic complexity, number of spines, the expression of c-fos, doublecortin (DCX), postsynaptic density-95 (PSD95), synaptophysin (Syn), interleukin-1β (IL-1β), and the number of major histocompatibility complex II (MHC-II) positive cells. ResultsMice with HFD-induced obesity exhibit hippocampus-dependent memory impairment, and treadmill exercise can prevent memory decline in these mice. The expression of DCX was significantly decreased in the HFD-induced obese mice compared to the control group (P<0.001). Treadmill exercise increased the expression of c-fos (P<0.001) and DCX (P=0.001) in the hippocampus of the HFD-induced obese mice. The axon length (P<0.001), dendritic complexity (P<0.001), the number of spines (P<0.001) and the expression of PSD95 (P<0.001) in the hippocampus were significantly decreased in the HFD-induced obese mice compared to the control group. Treadmill exercise increased the axon length (P=0.002), dendritic complexity(P<0.001), the number of spines (P<0.001) and the expression of PSD95 (P=0.001) of the hippocampus in the HFD-induced obese mice. Our study found a significant increase in MHC-II positive cells (P<0.001) and the concentration of IL-1β (P<0.001) in the hippocampus of HFD-induced obese mice compared to the control group. Treadmill exercise was found to reduce the number of MHC-II positive cells (P<0.001) and the concentration of IL-1β (P<0.001) in the hippocampus of obese mice induced by a HFD. ConclusionTreadmill exercise led to enhanced neurogenesis and neuroplasticity by increasing the axon length, dendritic complexity, dendritic spine numbers, and the expression of PSD95 and DCX, decreasing the number of MHC-II positive cells and neuroinflammation in HFD-induced obese mice. Therefore, we speculate that exercise may serve as a non-pharmacologic method that protects against HFD-induced hippocampus-dependent memory dysfunction by enhancing neuroplasticity and neurogenesis in the hippocampus of obese mice.
3.A preliminary study of mechanosensitive channels Piezo 1 and Piezo 2 promoting neurogenic bladder fibrosis in young rats
Lei LYU ; Yanping ZHANG ; Qi LI ; Junkui WANG ; Shuai YANG ; Zhaokai ZHOU ; Shuai LI ; Yibo WEN ; Yakai LIU ; Guowei SI ; Xingchen LIU ; Jianguo WEN
Journal of Modern Urology 2025;30(4):343-349
Objective: To explore the changes of mechanosensitive channels Piezos (Piezo 1 and Piezo 2) in neurogenic bladder (NB) of young rats and their effects,so as to provide reference for clinical search of new therapeutic targets. Methods: A total of 30 female young SD rats were divided into 5 groups based on random number table method:sham operation group (sham),2-week nerve transection group (NB-2W),6-week nerve transection group (NB-6W),2-week nerve transection + Piezos inhibitor group (NB-P-2W) and 6-week nerve transection + Piezos inhibitor group (NB-P-6W),with 6 rats in each group.The NB models were constructed by transecting the L6 and S1 spinal nerves of young rats.The NB-2W and NB-6W groups were not intervened after modeling,while the NB-P-2W and NB-P-6W groups were intraperitoneally injected with Piezos inhibitor GsMTx4 (10 mg/kg) every 2 days after modeling.Bladder cystometry and ultrasound were performed after 2 and 6 weeks of transection.The expressions of Piezos and fibrosis-related indexes (Collagen Ⅰ and α-smooth muscle actin) were detected in bladder tissues. Results: The results of bladder cystometry showed that the basal bladder pressure in NB-2W group was significantly increased,while it was slightly decreased but was still higher in NB-6W group than in the sham group (P<0.05).Basal bladder pressure was lower in NB-P-2W group than in NB-2W group,but was higher than that in the sham group; basal bladder pressure was lower in NB-P-6W group than in NB-6W group,but higher than that in the sham group (P<0.05).Compared with the sham group,the NB-2W and NB-6W groups had firstly increased and then decreased maximum cystometric capacity (MCC) (P<0.05).Compared with NB-2W group,NB-P-2W group had lower bladder leakage point pressure (BLPP),but higher MCC and bladder compliance (BC) (P<0.05).Compared with NB-6W group,NB-P-6W group had significantly lower BLPP but higher MCC and BC (P<0.05).HE and MASSON staining and ultrasound results showed that,with the extension of nerve transection time,bladder fibrosis gradually worsened,the bladder wall became rough and thickened,calculi were visible inside,and hydronephrosis gradually appeared; the degree of fibrosis in NB-P-2W and NB-P-6W groups was less than that in NB-2W and NB-6W groups,and no hydronephrosis was observed in the upper urinary tract.In addition,Western blotting and immunohistochemical results showed that NB-2W and NB-6W groups had significantly higher relative expression levels of Piezos,Collagen Ⅰ and α-SMA than the sham group (P<0.01),while NB-P-2W and NB-P-6W groups had lower relative expression levels of Piezos,Collagen Ⅰ and α-SMA than NB-2W and NB-6W groups (P<0.01). Conclusion: The increased expressions of mechanosensitive channels Piezos in NB young rats may be involved in the progression of bladder fibrosis,but its mechanism needs further study.
4.Influencing factors of overactive bladder in college freshmen and the impacts on anxiety,quality of life,and social interaction
Guowei SI ; Ce GAO ; Sida SHAO ; Feng SI ; Yakai LIU ; Songyang WANG ; Maochuan FAN ; Huiqing ZHANG ; Qifeng DOU ; Jianguo WEN
Journal of Modern Urology 2025;30(6):513-519
Objective: To investigate the influencing factors of overactive bladder (OAB) in college freshmen and the impacts of OAB on their mental health, quality of life and social interaction. Methods: An epidemiological questionnaire survey was conducted in an anonymous manner on the prevalence of OAB among 5300 freshmen aged 17 to 22 years enrolled in the 2023—2024 academic year in Xinxiang Medical University and Sanquan College of Xinxiang Medical University.The questionnaire included questions on basic information, history of urinary tract infection, constipation, smoking, history of alcohol consumption, history of coffee/strong tea drinking, history of carbonated beverage drinking, redundant prepuce, phimosis, holding urine, chronic insomnia, self-rating anxiety scale (SAS), quality of life score (QoL), and social avoidance and distress scale (SADS).The influencing factors of OAB were analyzed with multivariate logistic regression analysis.The subjects were grouped according to whether they had OAB, and the differences in SAS, QoL and SADS between the OAB group and non-OAB group were compared.The impacts of OAB on the anxiety level, quality of life, and social interaction were analyzed with multiple linear regression analysis. Results: The overall prevalence rate of OAB was 4.9% (244/5018).Multivariate logistic regression analysis showed that the history of urinary tract infection (OR=0.177), constipation (OR=0.636), smoking (OR=0.582), alcohol consumption (OR=0.685), coffee/strong tea drinking (OR=0.387), carbonated beverage drinking (OR=0.631), redundant prepuce (OR=0.673), phimosis (OR=0.311), urine holding (OR=0.593), and chronic insomnia (OR=0.256) were influencing factors for the occurrence of OAB (P<0.05).The OAB group had higher SAS score [(41.18±6.54) vs. (38.61±6.36)], QoL score [(3.65±1.20) vs. (2.79±0.95)], social avoidance score [(6.25±1.86) vs. (5.86±1.51)], social distress score [(6.27±1.59) vs. (5.97±1.32)], and total SADS score [(12.51±2.35) vs. (11.84±2.01)] than the non-OAB group (P<0.05).The results of multiple linear regression analysis showed that OAB could independently affect the scores of QoL, SAS, and SADS.The OAB group had higher scores of QoL, SAS, and SADS compared with the non-OAB group (P<0.001). Conclusion: History of urinary tract infection, constipation, smoking, alcohol consumption, coffee/strong tea drinking, carbonated beverage drinking, redundant prepuce, phimosis, urine holding, and chronic insomnia are influencing factors for the occurrence of OAB in male college students.Moreover, OAB has negative impacts on their mental health, quality of life, and social interaction.
5.Circadian and non-circadian regulation of the male reproductive system and reproductive damage: advances in the role and mechanisms of clock genes.
Meng-Chao HE ; Ying-Zhong DAI ; Yi-Meng WANG ; Qin-Ru LI ; Si-Wen LUO ; Xi LING ; Tong WANG ; Jia CAO ; Qing CHEN
Acta Physiologica Sinica 2025;77(4):712-720
Recently, male reproductive health has attracted extensive attention, with the adverse effects of circadian disruption on male fertility gradually gaining recognition. However, the mechanism by which circadian disruption leads to damage to male reproductive system remains unclear. In this review, we first summarized the dual regulatory roles of circadian clock genes on the male reproductive system: (1) circadian regulation of testosterone synthesis via the hypothalamic-pituitary-testicular (HPT) and hypothalamic-pituitary-adrenal (HPA) axes; (2) non-circadian regulation of spermatogenesis. Next, we further listed the possible mechanisms by which circadian disruption impairs male fertility, including interference with the oscillatory function of the reproductive system, i.e., synchronization of the HPT axis, crosstalk between the HPT axis and the HPA axis, as well as direct damage to germ cells by disturbing the non-oscillatory function of the reproductive system. Future research using spatiotemporal omics, epigenomic assays, and neural circuit mapping in studying the male reproductive system may provide new clues to systematically unravel the mechanisms by which circadian disruption affects male reproductive system through circadian clock genes.
Male
;
Humans
;
Animals
;
Circadian Clocks/physiology*
;
Hypothalamo-Hypophyseal System/physiology*
;
Circadian Rhythm/genetics*
;
Spermatogenesis/physiology*
;
Pituitary-Adrenal System/physiology*
;
Testis/physiology*
;
Testosterone/biosynthesis*
;
CLOCK Proteins
;
Infertility, Male/physiopathology*
6.A new tetralone glycoside in leaves of Cyclocarya paliurus.
Ting-Si GUO ; Qin HUANG ; Qi-Qi HU ; Fei-Bing HUANG ; Qing-Ling XIE ; Han-Wen YUAN ; Wei WANG ; Yu-Qing JIAN
China Journal of Chinese Materia Medica 2025;50(1):146-167
The chemical constituents from leaves of Cyclocarya paliurus were isolated and purified by chromatography on silica gel, C_(18) reverse-phase silica gel, and Sephadex LH-20 gel, as well as semi-preparative high-performance liquid chromatography. Six compounds were identified by UV, IR, NMR, MS, calculated ECD, and comparison with literature data as cyclopaloside D(1), boscialin(2),(5R,6S)-6-hydroxy-6-[(E)-3-hydroxybut-1-enyl]-1,1,5-trimethylcyclohexanone(3), 3S,5R-dihydroxy-6R,7-megastigmadien-9-one(4), 3S,5R-dihydroxy-6S,7-megastigmadien-9-one(5), and gingerglycolipid A(6), respectively. Among them, compound 1 was identified as a new tetralone glycoside, and compounds 2-6 were isolated from leaves of C. paliurus for the first time. Furthermore, compound 1 exhibited strong antioxidant activity, with the IC_(50) of(454.20±31.81)μmol·L~(-1) and(881.82±42.31)μmol·L~(-1) in scavenging DPPH and ABTS free radicals, respectively.
Plant Leaves/chemistry*
;
Glycosides/isolation & purification*
;
Juglandaceae/chemistry*
;
Tetralones/isolation & purification*
;
Drugs, Chinese Herbal/isolation & purification*
7.Verification of resveratrol ameliorating vascular endothelial damage in sepsis-associated encephalopathy through HIF-1α pathway based on network pharmacology and experiment.
Rong LI ; Yue WU ; Wen-Xuan ZHU ; Meng QIN ; Si-Yu SUN ; Li-Ya WANG ; Mei-Hui TIAN ; Ying YU
China Journal of Chinese Materia Medica 2025;50(4):1087-1097
This study aims to investigate the mechanism by which resveratrol(RES) alleviates cerebral vascular endothelial damage in sepsis-associated encephalopathy(SAE) through network pharmacology and animal experiments. By using network pharmacology, the study identified common targets and genes associated with RES and SAE and constructed a protein-protein interaction( PPI) network. Gene Ontology(GO) analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis were performed to pinpoint key signaling pathways, followed by molecular docking validation. In the animal experiments, a cecum ligation and puncture(CLP) method was employed to induce SAE in mice. The mice were randomly assigned to the sham group, CLP group, and medium-dose and high-dose groups of RES. The sham group underwent open surgery without CLP, and the CLP group received an intraperitoneal injection of 0. 9% sodium chloride solution after surgery. The medium-dose and high-dose groups of RES were injected intraperitoneally with 40 mg·kg-1 and 60 mg·kg~(-1) of RES after modeling, respectively, and samples were collected 12 hours later. Neurological function scores were assessed, and the wet-dry weight ratio of brain tissue was detected. Serum superoxide dismutase(SOD), catalase( CAT) activity, and malondialdehyde( MDA) content were measured by oxidative stress kit. Histopathological changes in brain tissue were examined using hematoxylin-eosin(HE) staining. Transmission electron microscopy was employed to evaluate tight cell junctions and mitochondrial ultrastructure changes in cerebral vascular endothelium. Western blot analysis was performed to detect the expression of zonula occludens1( ZO-1), occludin, claudins-5, optic atrophy 1( OPA1), mitofusin 2(Mfn2), dynamin-related protein 1(Drp1), fission 1(Fis1), and hypoxia-inducible factor-1α(HIF-1α). Network pharmacology identified 76 intersecting targets for RES and SAE, with the top five core targets being EGFR, PTGS2, ESR1, HIF-1α, and APP. GO enrichment analysis showed that RES participated in the SAE mechanism through oxidative stress reaction. KEGG enrichment analysis indicated that RES participated in SAE therapy through HIF-1α, Rap1, and other signaling pathways. Molecular docking results showed favorable docking activity between RES and key targets such as HIF-1α. Animal experiment results demonstrated that compared to the sham group, the CLP group exhibited reduced nervous reflexes, decreased water content in brain tissue, as well as serum SOD and CAT activity, and increased MDA content. In addition, the CLP group exhibited disrupted tight junctions in cerebral vascular endothelium and abnormal mitochondrial morphology. The protein expression levels of Drp1, Fis1, and HIF-1α in brain tissue were increased, while those of ZO-1, occludin, claudin-5, Mfn2, and OPA1 were decreased. In contrast, the medium-dose and high-dose groups of RES showed improved neurological function, increased water content in brain tissue and SOD and CAT activity, and decreased MDA content. Cell morphology in brain tissue, tight junctions between endothelial cells, and mitochondrial structure were improved. The protein expressions of Drp1, Fis1, and HIF-1α were decreased, while those of ZO-1, occludin, claudin-5, Mfn2, and OPA1 were increased. This study suggested that RES could ameliorate cerebrovascular endothelial barrier function and maintain mitochondrial homeostasis by inhibiting oxidative stress after SAE damage, potentially through modulation of the HIF-1α signaling pathway.
Animals
;
Mice
;
Network Pharmacology
;
Resveratrol/administration & dosage*
;
Male
;
Sepsis-Associated Encephalopathy/genetics*
;
Signal Transduction/drug effects*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Endothelium, Vascular/metabolism*
;
Molecular Docking Simulation
;
Protein Interaction Maps/drug effects*
;
Humans
;
Sepsis/complications*
;
Oxidative Stress/drug effects*
8.Molecular mechanism of Siwu Decoction in treating premature ovarian insufficiency based on mitophagy pathway modulated and mediated by estrogen receptor subtype.
Si CHEN ; Ze-Ye ZHANG ; Nan CONG ; Jiao-Jiao YANG ; Feng-Ming YOU ; Yao CHEN ; Ning WANG ; Pi-Wen ZHAO
China Journal of Chinese Materia Medica 2025;50(8):2173-2183
In this study, we explored the pharmacological effects of Siwu Decoction in treating premature ovarian insufficiency(POI) and its molecular mechanism based on the mitophagy pathway modulated and mediated by estrogen receptor(ER) subtypes. Female Balb/c mice were divided into a control group, model group, as well as high-dose and low-dose groups of Siwu Decoction. The POI mice model was constructed by intraperitoneal injection of cisplatin. The high-dose and low-dose groups of Siwu Decoction were administered intragastrically with Siwu Decoction each day for 14 days. During this period, we monitored the estrous cycle and body weight of the mice and calculated the ovarian index. The morphology of the ovaries was detected by hematoxylin-eosin(HE) staining, and the number of primordial follicles was counted. The apoptosis of the ovarian tissue was detected by TUNEL staining. The expression levels of anti-Müllerian hormone(AMH), apoptosis-associated and mitophagy-associated proteins, ER subtypes, and the expression levels of key proteins of its mediated molecular pathways were detected by Western blot and immunohistochemistry. KGN cells were divided into a control group, model group, Siwu Decoction group, and gene silencing group. The apoptosis model was induced by H_2O_2, and PTEN-induced putative kinase 1(PINK1) gene silencing was induced by siRNA transfection. The Siwu Decoction group and gene silencing group were added to the medium containing Siwu Decoction. Cell viability was detected by CCK-8 assay. Cell senescence was detected by senescence-associated-β-galactosidase. The expression levels of apoptosis-associated and mitophagy-associated proteins were detected by Western blot. The results of in vivo experiments showed that compared with the model group, the mice in the high-dose and low-dose groups of Siwu Decoction significantly recovered the rhythm of the estrous cycle, and the levels of ovarian index, number of primordial follicles, and expression of AMH, representative indexes of ovarian function, were significantly higher, suggesting that the level of ovarian function was significantly improved. The expression levels of the apoptosis-related proteins, cytochrome C(Cyt C), cysteinyl aspartate specific proteinase 3(caspase 3), B-cell lymphoma-2(Bcl-2)-associated X(Bax), and mitophagy-associated indicator(Beclin 1) were significantly decreased, and the expression levels of Bcl-2 was significantly elevated. The positive area of TUNEL was significantly reduced, suggesting that the apoptosis level of the ovaries was significantly reduced. The expression levels of PINK1, Parkin, and sequestosome 1(p62) were significantly reduced, suggesting that the level of ovarian mitophagy was significantly down-regulated. The expression levels of ERα and ERβ were significantly elevated, and the ratio of ERα/ERβ was significantly reduced. The expression levels of key proteins in the pathway, phosphoinositide 3-kinase(PI3K) and protein kinase B(Akt), were significantly reduced, suggesting that the regulation of ER subtypes and the mediation of PI3K/Akt pathway were the key mechanisms. In vitro experiments showed that compared with the model group, the proportion of senescent cells in the Siwu Decoction group was significantly reduced. Cyt C, caspase 3, Beclin 1, Parkin, and p62 were significantly reduced, which was in line with in vivo experimental results. The proportion of senescent cells and the expression level of the above proteins were further significantly reduced after PINK1 silencing. It can be seen that Siwu Decoction can regulate the expression level and proportion of ER subtypes in KGN cells, then mediate the PI3K/Akt pathway to inhibit excessive mitophagy and apoptosis, and exert therapeutic effects of POI.
Animals
;
Female
;
Drugs, Chinese Herbal/administration & dosage*
;
Mitophagy/drug effects*
;
Primary Ovarian Insufficiency/physiopathology*
;
Mice
;
Mice, Inbred BALB C
;
Humans
;
Receptors, Estrogen/genetics*
;
Apoptosis/drug effects*
;
Ovary/metabolism*
;
Signal Transduction/drug effects*
;
Anti-Mullerian Hormone/genetics*
9.Exploration of pharmacodynamic material basis and mechanism of Jinbei Oral Liquid against idiopathic pulmonary fibrosis based on UHPLC-Q-TOF-MS/MS and network pharmacology.
Jin-Chun LEI ; Si-Tong ZHANG ; Xian-Run HU ; Wen-Kang LIU ; Xue-Mei CHENG ; Xiao-Jun WU ; Wan-Sheng CHEN ; Man-Lin LI ; Chang-Hong WANG
China Journal of Chinese Materia Medica 2025;50(10):2825-2840
This study aims to explore the pharmacodynamic material basis of Jinbei Oral Liquid(JBOL) against idiopathic pulmonary fibrosis(IPF) based on serum pharmacochemistry and network pharmacology. The ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UHPLC-Q-TOF-MS/MS) technology was employed to analyze and identify the components absorbed into rat blood after oral administration of JBOL. Combined with network pharmacology, the study explored the pharmacodynamic material basis and potential mechanism of JBOL against IPF through protein-protein interaction(PPI) network construction, "component-target-pathway" analysis, Gene Ontology(GO) functional enrichment, and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis. First, a total of 114 compounds were rapidly identified in JBOL extract according to the exact relative molecular mass, fragment ions, and other information of the compounds with the use of reference substances and a self-built compound database. Second, on this basis, 70 prototype components in blood were recognized by comparing blank serum with drug-containing serum samples, including 28 flavonoids, 25 organic acids, 4 saponins, 4 alkaloids, and 9 others. Finally, using these components absorbed into blood as candidates, the study obtained 212 potential targets of JBOL against IPF. The anti-IPF mechanism might involve the action of active ingredients such as glycyrrhetinic acid, cryptotanshinone, salvianolic acid B, and forsythoside A on core targets like AKT1, TNF, and ALB and thereby the regulation of multiple signaling pathways including PI3K/AKT, HIF-1, and TNF. In conclusion, JBOL exerts the anti-IPF effect through multiple components, targets, and pathways. The results would provide a reference for further study on pharmacodynamic material basis and pharmacological mechanism of JBOL.
Drugs, Chinese Herbal/pharmacokinetics*
;
Animals
;
Tandem Mass Spectrometry
;
Network Pharmacology
;
Rats
;
Chromatography, High Pressure Liquid
;
Rats, Sprague-Dawley
;
Male
;
Idiopathic Pulmonary Fibrosis/metabolism*
;
Humans
;
Administration, Oral
;
Protein Interaction Maps/drug effects*
;
Signal Transduction/drug effects*
10.Characterization of hippocampal components of Danzhi Xiaoyao Formula based on HPLC-Q-TOF-MS/MS and network pharmacology and assessment of its therapeutic potential for nervous system diseases.
Wen-Qing HU ; Hui-Yuan GAO ; Li YANG ; Yu-Xin WANG ; Hao-Jie CHENG ; Si-Yu YANG ; Mei-Yu ZHANG ; Jian SUN
China Journal of Chinese Materia Medica 2025;50(14):4053-4062
In this study, the pharmacodynamic components and potential pharmacological functions of Danzhi Xiaoyao Formula in treating nervous system diseases were investigated by hippocampal component characterization and network pharmacology. After rats were administrated with Danzhi Xiaoyao Formula by gavage, high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry(HPLC-Q-TOF-MS/MS) was employed to explore the components in the hippocampus of rats. Fifty-seven components were identified in the hippocampus of rats by comparing the extract of Danzhi Xiaoyao Formula, herbal components in the hippocampus after administration, and blank samples. KEGG and GO analyses predicted 74 core targets including GSK3B, MAPK1, AKT, IL6. These targets were involved in PI3K/Akt, NF-κB, MAPK, JAK/STAT, Wnt, and other signaling pathways. The results indicated that Danzhi Xiaoyao Formula may ameliorate other nervous system diseases enriched in DO, such as neurodegenerative diseases, cerebrovascular diseases, and mental and emotional disorders by mediating target pathways, inhibiting inflammation, reducing neuronal damage, and alleviating hippocampal atrophy. The relevant activities exhibited by this formula in nervous system diseases such as Alzheimer's disease, Parkinson's disease, and diabetic neuropathy have extremely high development value and are worthy of further in-depth research. This study provides a theoretical basis and practical guidance for expanding the application of Danzhi Xiaoyao Formula in the treatment of nervous system diseases.
Drugs, Chinese Herbal/administration & dosage*
;
Animals
;
Rats
;
Hippocampus/metabolism*
;
Network Pharmacology
;
Chromatography, High Pressure Liquid
;
Tandem Mass Spectrometry
;
Rats, Sprague-Dawley
;
Male
;
Nervous System Diseases/genetics*
;
Humans
;
Signal Transduction/drug effects*

Result Analysis
Print
Save
E-mail