1.Influencing factors of overactive bladder in college freshmen and the impacts on anxiety,quality of life,and social interaction
Guowei SI ; Ce GAO ; Sida SHAO ; Feng SI ; Yakai LIU ; Songyang WANG ; Maochuan FAN ; Huiqing ZHANG ; Qifeng DOU ; Jianguo WEN
Journal of Modern Urology 2025;30(6):513-519
Objective: To investigate the influencing factors of overactive bladder (OAB) in college freshmen and the impacts of OAB on their mental health, quality of life and social interaction. Methods: An epidemiological questionnaire survey was conducted in an anonymous manner on the prevalence of OAB among 5300 freshmen aged 17 to 22 years enrolled in the 2023—2024 academic year in Xinxiang Medical University and Sanquan College of Xinxiang Medical University.The questionnaire included questions on basic information, history of urinary tract infection, constipation, smoking, history of alcohol consumption, history of coffee/strong tea drinking, history of carbonated beverage drinking, redundant prepuce, phimosis, holding urine, chronic insomnia, self-rating anxiety scale (SAS), quality of life score (QoL), and social avoidance and distress scale (SADS).The influencing factors of OAB were analyzed with multivariate logistic regression analysis.The subjects were grouped according to whether they had OAB, and the differences in SAS, QoL and SADS between the OAB group and non-OAB group were compared.The impacts of OAB on the anxiety level, quality of life, and social interaction were analyzed with multiple linear regression analysis. Results: The overall prevalence rate of OAB was 4.9% (244/5018).Multivariate logistic regression analysis showed that the history of urinary tract infection (OR=0.177), constipation (OR=0.636), smoking (OR=0.582), alcohol consumption (OR=0.685), coffee/strong tea drinking (OR=0.387), carbonated beverage drinking (OR=0.631), redundant prepuce (OR=0.673), phimosis (OR=0.311), urine holding (OR=0.593), and chronic insomnia (OR=0.256) were influencing factors for the occurrence of OAB (P<0.05).The OAB group had higher SAS score [(41.18±6.54) vs. (38.61±6.36)], QoL score [(3.65±1.20) vs. (2.79±0.95)], social avoidance score [(6.25±1.86) vs. (5.86±1.51)], social distress score [(6.27±1.59) vs. (5.97±1.32)], and total SADS score [(12.51±2.35) vs. (11.84±2.01)] than the non-OAB group (P<0.05).The results of multiple linear regression analysis showed that OAB could independently affect the scores of QoL, SAS, and SADS.The OAB group had higher scores of QoL, SAS, and SADS compared with the non-OAB group (P<0.001). Conclusion: History of urinary tract infection, constipation, smoking, alcohol consumption, coffee/strong tea drinking, carbonated beverage drinking, redundant prepuce, phimosis, urine holding, and chronic insomnia are influencing factors for the occurrence of OAB in male college students.Moreover, OAB has negative impacts on their mental health, quality of life, and social interaction.
2.Fucoidan sulfate regulates Hmox1-mediated ferroptosis to ameliorate myocardial injury in diabetic cardiomyopathy.
Yu-Feng CAI ; Wei HU ; Yi-Gang WAN ; Yue TU ; Si-Yi LIU ; Wen-Jie LIU ; Liu-Yun-Xin PAN ; Ke-Jia WU
China Journal of Chinese Materia Medica 2025;50(9):2461-2471
This study explores the role and underlying molecular mechanisms of fucoidan sulfate(FPS) in regulating heme oxygenase-1(Hmox1)-mediated ferroptosis to ameliorate myocardial injury in diabetic cardiomyopathy(DCM) through in vivo and in vitro experiments and network pharmacology analysis. In vivo, a DCM rat model was established using a combination of "high-fat diet feeding + two low-dose streptozotocin(STZ) intraperitoneal injections". The rats were randomly divided into four groups: normal, model, FPS, and dapagliflozin(Dapa) groups. In vitro, a cellular model was created by inducing rat cardiomyocytes(H9c2 cells) with high glucose(HG), using zinc protoporphyrin(ZnPP), an Hmox1 inhibitor, as the positive control. An automatic biochemical analyzer was used to measure blood glucose(BG), serum aspartate aminotransferase(AST), serum lactate dehydrogenase(LDH), and serum creatine kinase-MB(CK-MB) levels. Echocardiography was used to assess rat cardiac function, including ejection fraction(EF) and fractional shortening(FS). Pathological staining was performed to observe myocardial morphology and fibrotic characteristics. DCFH-DA fluorescence probe was used to detect reactive oxygen species(ROS) levels in myocardial tissue. Specific assay kits were used to measure serum brain natriuretic peptide(BNP), myocardial Fe~(2+), and malondialdehyde(MDA) levels. Western blot(WB) was used to detect the expression levels of myosin heavy chain 7B(MYH7B), natriuretic peptide A(NPPA), collagens type Ⅰ(Col-Ⅰ), α-smooth muscle actin(α-SMA), ferritin heavy chain 1(FTH1), solute carrier family 7 member 11(SLC7A11), glutathione peroxidase 4(GPX4), 4-hydroxy-2-nonenal(4-HNE), and Hmox1. Immunohistochemistry(IHC) was used to examine Hmox1 protein expression patterns. FerroOrange and Highly Sensitive DCFH-DA fluorescence probes were used to detect intracellular Fe~(2+) and ROS levels. Transmission electron microscopy was used to observe changes in mitochondrial morphology. In network pharmacology, FPS targets were identified through the PubChem database and PharmMapper platform. DCM-related targets were integrated from OMIM, GeneCards, and DisGeNET databases, while ferroptosis-related targets were obtained from the FerrDb database. A protein-protein interaction(PPI) network was constructed for the intersection of these targets using STRING 11.0, and core targets were screened with Cytoscape 3.9.0. Molecular docking analysis was conducted using AutoDock and PyMOL 2.5. In vivo results showed that FPS significantly reduced AST, LDH, CK-MB, and BNP levels in DCM model rats, improved cardiac function, decreased the expression of myocardial injury proteins(MYH7B, NPPA, Col-Ⅰ, and α-SMA), alleviated myocardial hypertrophy and fibrosis, and reduced Fe~(2+), ROS, and MDA levels in myocardial tissue. Furthermore, FPS regulated the expression of ferroptosis-related markers(Hmox1, FTH1, SLC7A11, GPX4, and 4-HNE) to varying degrees. Network pharmacology results revealed 313 potential targets for FPS, 1 125 targets for DCM, and 14 common targets among FPS, DCM, and FerrDb. Hmox1 was identified as a key target, with FPS showing high docking activity with Hmox1. In vitro results demonstrated that FPS restored the expression levels of ferroptosis-related proteins, reduced intracellular Fe~(2+) and ROS levels, and alleviated mitochondrial structural damage in cardiomyocytes. In conclusion, FPS improves myocardial injury in DCM, with its underlying mechanism potentially involving the regulation of Hmox1 to inhibit ferroptosis. This study provides pharmacological evidence supporting the therapeutic potential of FPS for DCM-induced myocardial injury.
Animals
;
Ferroptosis/drug effects*
;
Rats
;
Diabetic Cardiomyopathies/physiopathology*
;
Male
;
Rats, Sprague-Dawley
;
Polysaccharides/pharmacology*
;
Heme Oxygenase-1/genetics*
;
Myocytes, Cardiac/metabolism*
;
Myocardium/pathology*
;
Humans
;
Cell Line
;
Heme Oxygenase (Decyclizing)
3.Molecular mechanism of Siwu Decoction in treating premature ovarian insufficiency based on mitophagy pathway modulated and mediated by estrogen receptor subtype.
Si CHEN ; Ze-Ye ZHANG ; Nan CONG ; Jiao-Jiao YANG ; Feng-Ming YOU ; Yao CHEN ; Ning WANG ; Pi-Wen ZHAO
China Journal of Chinese Materia Medica 2025;50(8):2173-2183
In this study, we explored the pharmacological effects of Siwu Decoction in treating premature ovarian insufficiency(POI) and its molecular mechanism based on the mitophagy pathway modulated and mediated by estrogen receptor(ER) subtypes. Female Balb/c mice were divided into a control group, model group, as well as high-dose and low-dose groups of Siwu Decoction. The POI mice model was constructed by intraperitoneal injection of cisplatin. The high-dose and low-dose groups of Siwu Decoction were administered intragastrically with Siwu Decoction each day for 14 days. During this period, we monitored the estrous cycle and body weight of the mice and calculated the ovarian index. The morphology of the ovaries was detected by hematoxylin-eosin(HE) staining, and the number of primordial follicles was counted. The apoptosis of the ovarian tissue was detected by TUNEL staining. The expression levels of anti-Müllerian hormone(AMH), apoptosis-associated and mitophagy-associated proteins, ER subtypes, and the expression levels of key proteins of its mediated molecular pathways were detected by Western blot and immunohistochemistry. KGN cells were divided into a control group, model group, Siwu Decoction group, and gene silencing group. The apoptosis model was induced by H_2O_2, and PTEN-induced putative kinase 1(PINK1) gene silencing was induced by siRNA transfection. The Siwu Decoction group and gene silencing group were added to the medium containing Siwu Decoction. Cell viability was detected by CCK-8 assay. Cell senescence was detected by senescence-associated-β-galactosidase. The expression levels of apoptosis-associated and mitophagy-associated proteins were detected by Western blot. The results of in vivo experiments showed that compared with the model group, the mice in the high-dose and low-dose groups of Siwu Decoction significantly recovered the rhythm of the estrous cycle, and the levels of ovarian index, number of primordial follicles, and expression of AMH, representative indexes of ovarian function, were significantly higher, suggesting that the level of ovarian function was significantly improved. The expression levels of the apoptosis-related proteins, cytochrome C(Cyt C), cysteinyl aspartate specific proteinase 3(caspase 3), B-cell lymphoma-2(Bcl-2)-associated X(Bax), and mitophagy-associated indicator(Beclin 1) were significantly decreased, and the expression levels of Bcl-2 was significantly elevated. The positive area of TUNEL was significantly reduced, suggesting that the apoptosis level of the ovaries was significantly reduced. The expression levels of PINK1, Parkin, and sequestosome 1(p62) were significantly reduced, suggesting that the level of ovarian mitophagy was significantly down-regulated. The expression levels of ERα and ERβ were significantly elevated, and the ratio of ERα/ERβ was significantly reduced. The expression levels of key proteins in the pathway, phosphoinositide 3-kinase(PI3K) and protein kinase B(Akt), were significantly reduced, suggesting that the regulation of ER subtypes and the mediation of PI3K/Akt pathway were the key mechanisms. In vitro experiments showed that compared with the model group, the proportion of senescent cells in the Siwu Decoction group was significantly reduced. Cyt C, caspase 3, Beclin 1, Parkin, and p62 were significantly reduced, which was in line with in vivo experimental results. The proportion of senescent cells and the expression level of the above proteins were further significantly reduced after PINK1 silencing. It can be seen that Siwu Decoction can regulate the expression level and proportion of ER subtypes in KGN cells, then mediate the PI3K/Akt pathway to inhibit excessive mitophagy and apoptosis, and exert therapeutic effects of POI.
Animals
;
Female
;
Drugs, Chinese Herbal/administration & dosage*
;
Mitophagy/drug effects*
;
Primary Ovarian Insufficiency/physiopathology*
;
Mice
;
Mice, Inbred BALB C
;
Humans
;
Receptors, Estrogen/genetics*
;
Apoptosis/drug effects*
;
Ovary/metabolism*
;
Signal Transduction/drug effects*
;
Anti-Mullerian Hormone/genetics*
4.Protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on a yorkshire model of brain injury after traumatic blood loss.
Xiang-Yu SONG ; Yang-Hui DONG ; Zhi-Bo JIA ; Lei-Jia CHEN ; Meng-Yi CUI ; Yan-Jun GUAN ; Bo-Yao YANG ; Si-Ce WANG ; Sheng-Feng CHEN ; Peng-Kai LI ; Heng CHEN ; Hao-Chen ZUO ; Zhan-Cheng YANG ; Wen-Jing XU ; Ya-Qun ZHAO ; Jiang PENG
Chinese Journal of Traumatology 2025;28(6):469-476
PURPOSE:
To investigate the protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on ischemic hypoxic injury of yorkshire brain tissue caused by traumatic blood loss.
METHODS:
This article performed a random controlled trial. Brain tissue of 7 yorkshire was selected and divided into the sub-low temperature anterograde machine perfusion group (n = 4) and the blank control group (n = 3) using the random number table method. A yorkshire model of brain tissue injury induced by traumatic blood loss was established. Firstly, the perfusion temperature and blood oxygen saturation were monitored in real-time during the perfusion process. The number of red blood cells, hemoglobin content, NA+, K+, and Ca2+ ions concentrations and pH of the perfusate were detected. Following perfusion, we specifically examined the parietal lobe to assess its water content. The prefrontal cortex and hippocampus were then dissected for histological evaluation, allowing us to investigate potential regional differences in tissue injury. The blank control group was sampled directly before perfusion. All statistical analyses and graphs were performed using GraphPad Prism 8.0 Student t-test. All tests were two-sided, and p value of less than 0.05 was considered to indicate statistical significance.
RESULTS:
The contents of red blood cells and hemoglobin during perfusion were maintained at normal levels but more red blood cells were destroyed 3 h after the perfusion. The blood oxygen saturation of the perfusion group was maintained at 95% - 98%. NA+ and K+ concentrations were normal most of the time during perfusion but increased significantly at about 4 h. The Ca2+ concentration remained within the normal range at each period. Glucose levels were slightly higher than the baseline level. The pH of the perfusion solution was slightly lower at the beginning of perfusion, and then gradually increased to the normal level. The water content of brain tissue in the sub-low and docile perfusion group was 78.95% ± 0.39%, which was significantly higher than that in the control group (75.27% ± 0.55%, t = 10.49, p < 0.001), and the difference was statistically significant. Compared with the blank control group, the structure and morphology of pyramidal neurons in the prefrontal cortex and CA1 region of the hippocampal gyrus were similar, and their integrity was better. The structural integrity of granulosa neurons was destroyed and cell edema increased in the perfusion group compared with the blank control group. Immunofluorescence staining for glail fibrillary acidic protein and Iba1, markers of glial cells, revealed well-preserved cell structures in the perfusion group. While there were indications of abnormal cellular activity, the analysis showed no significant difference in axon thickness or integrity compared to the 1-h blank control group.
CONCLUSIONS
Mild hypothermic machine perfusion can improve ischemia and hypoxia injury of yorkshire brain tissue caused by traumatic blood loss and delay the necrosis and apoptosis of yorkshire brain tissue by continuous oxygen supply, maintaining ion homeostasis and reducing tissue metabolism level.
Animals
;
Perfusion/methods*
;
Disease Models, Animal
;
Brain Injuries/etiology*
;
Swine
;
Male
;
Hypothermia, Induced/methods*
5.Micronucleus counts correlating with male infertility: a clinical analysis of chromosomal abnormalities and reproductive parameters.
Shun-Han ZHANG ; Ying-Jun XIE ; Wen-Jun QIU ; Qian-Ying PAN ; Li-Hao CHEN ; Jian-Feng WU ; Si-Qi HUANG ; Ding WANG ; Xiao-Fang SUN
Asian Journal of Andrology 2025;27(4):537-542
Investigating the correlation between micronucleus formation and male infertility has the potential to improve clinical diagnosis and deepen our understanding of pathological progression. Our study enrolled 2252 male patients whose semen was analyzed from March 2023 to July 2023. Their clinical data, including semen parameters and age, were also collected. Genetic analysis was used to determine whether the sex chromosome involved in male infertility was abnormal (including the increase, deletion, and translocation of the X and Y chromosomes), and subsequent semen analysis was conducted for clinical grouping purposes. The participants were categorized into five groups: normozoospermia, asthenozoospermia, oligozoospermia, oligoasthenozoospermia, and azoospermia. Patients were randomly selected for further study; 41 patients with normozoospermia were included in the control group and 117 patients with non-normozoospermia were included in the study group according to the proportions of all enrolled patients. Cytokinesis-block micronucleus (CBMN) screening was conducted through peripheral blood. Statistical analysis was used to determine the differences in micronuclei (MNi) among the groups and the relationships between MNi and clinical data. There was a significant increase in MNi in infertile men, including those with azoospermia, compared with normozoospermic patients, but there was no significant difference between the genetic and nongenetic groups in azoospermic men. The presence of MNi was associated with sperm concentration, progressive sperm motility, immotile spermatozoa, malformed spermatozoa, total sperm count, and total sperm motility. This study underscores the potential utility of MNi as a diagnostic tool and highlights the need for further research to elucidate the underlying mechanisms of male infertility.
Humans
;
Male
;
Infertility, Male/genetics*
;
Adult
;
Micronucleus Tests
;
Semen Analysis
;
Oligospermia/genetics*
;
Azoospermia/genetics*
;
Chromosome Aberrations
;
Sperm Count
;
Micronuclei, Chromosome-Defective
;
Middle Aged
6.Risk factors and development of a predictive model for myocardial injury in children with rotavirus-induced diarrhea.
Li-Ping FENG ; Xiao-Gang WANG ; Wen-Si NIU ; Jin-Jin SHI ; Hong-Ying WANG
Chinese Journal of Contemporary Pediatrics 2025;27(6):709-715
OBJECTIVES:
To investigate the incidence of myocardial injury in children with rotavirus-induced diarrhea, analyze its risk factors, and develop a predictive model for myocardial injury.
METHODS:
A retrospective analysis was conducted on 203 children diagnosed with rotavirus infection at the Suzhou Wujiang District Children's Hospital from January 2021 to December 2023. The children were divided into groups based on the presence or absence of myocardial injury. Basic information and laboratory indicators at admission were collected and compared between the two groups. LASSO regression was used to screen potential risk factors, followed by multivariate logistic regression to evaluate independent factors. A nomogram model was established and validated.
RESULTS:
Out of 203 children with rotavirus infection, 53 cases (26.1%) showed myocardial injury. Age, severe dehydration, metabolic acidosis, red cell distribution width, and blood sodium were closely associated with myocardial injury in children with rotavirus-induced diarrhea (P<0.05). The area under the receiver operating characteristic curve for the predictive model of myocardial injury was 0.841 (95%CI: 0.777-0.905), with a sensitivity of 73.6% and specificity of 85.3%. The model curve closely fit the ideal diagonal line. Decision curve analysis showed that using the model for prediction resulted in the highest net benefit when the probability threshold was 0.18-0.98.
CONCLUSIONS
The model developed in this study can predict the risk of myocardial injury in children with rotavirus-induced diarrhea.
Humans
;
Rotavirus Infections/complications*
;
Diarrhea/etiology*
;
Male
;
Female
;
Infant
;
Retrospective Studies
;
Risk Factors
;
Child, Preschool
;
Logistic Models
;
Child
7.Metabolic Characteristics of 18F-FDG in Different Types of Myeloid Leukemia Cells and Tumor-Bearing Nude Mice.
Xi CHEN ; Qin YAN ; Xiang QIN ; Li ZHANG ; Yue FENG ; Qian CHEN ; Si-Li LONG ; Wen-Jun LIU
Journal of Experimental Hematology 2025;33(2):325-330
OBJECTIVE:
To investigate the metabolic characteristics of 18F-fluorodeoxyglucose (18F-FDG) in myeloid leukemia by in vitro culture of myeloid leukemia cells and construction of tumor-bearing nude mouse model.
METHODS:
U937, THP-1, HL60 and K562 cells were cultured in vitro. The cells in logarithmic growth phase (l×10 5 cells/well) were added with 18F-FDG, and the uptake rate of 18F-FDG was measured at 15, 30, 60 and 120 min after addation, respectively. The four kinds of cells were inoculated subcutaneously into the hind limbs of nude mice to establish a tumor-bearing nude mouse model. When the tumor size was about 500 mm3, 18F-FDG was injected through the tail vein of the mice, and positron emission tomography/computed tomography was performed at 60 min after injection. The morphology of tumor-bearing cells was observed by hematoxylin-eosin (HE) staining in serial pathological sections.
RESULTS:
After co-incubation with 18F-FDG, the 18F-FDG uptake rates of U937 cells were significantly higher than THP-1, HL60 and K562 cells at 4 time points (all P <0.05), and THP-1 cells were higher than K562 cells (all P <0.05). The uptake rate of 18F-FDG by leukemia cells was rapid in the first 60 min, then tended to be stable. Pathological analysis showed that subcutaneous inoculation of U937, THP-1, HL60 and K562 cells could successfully establish tumor-bearing nude mouse models of myeloid leukemia. The 18F-FDG uptake value in U937 tumor-bearing nude mice was significantly higher than THP-1, HL60 and K562 tumor-bearing nude mice (all P <0.01). The 18F-FDG uptake values in THP-1 and HL60 tumor-bearing nude mice were significantly higher than that in K562 tumor-bearing nude mice (both P <0.01).
CONCLUSION
The tumor-bearing nude mouse model of myeloid leukemia can be successfully constructed by subcutaneous inoculation. The 18F-FDG uptake rate of acute myeloid leukemia (AML) cells is higher in cells cultured in vitro and tumor-bearing nude mouse model. 18F-FDG may have better clinical application value for AML.
Animals
;
Fluorodeoxyglucose F18/metabolism*
;
Mice, Nude
;
Mice
;
Humans
;
Leukemia, Myeloid/diagnostic imaging*
;
HL-60 Cells
;
K562 Cells
;
Cell Line, Tumor
;
U937 Cells
8.Association of Dietary Preferences with All-Cause and Cause-Specific Mortality: Prospective Cohort Study of 1,160,312 Adults in China.
Wen Ru SHI ; Si Tong WEI ; Qing Mei HUANG ; Huan CHEN ; Dong SHEN ; Bo Feng ZHU ; Chen MAO
Biomedical and Environmental Sciences 2025;38(9):1120-1128
OBJECTIVE:
Although dietary preferences influence chronic diseases, few studies have linked dietary preferences to mortality risk, particularly in large cohorts. To investigate the relationship between dietary preferences and mortality risk (all-cause, cancer, and cardiovascular disease [CVD]) in a large adult cohort.
METHODS:
A cohort of 1,160,312 adults (mean age 62.48 ± 9.55) from the Shenzhen Healthcare Big Data Cohort (SHBDC) was analyzed. Hazard ratios ( HRs) for mortality were estimated using the Cox proportional hazards model.
RESULTS:
The study identified 12,308 all-cause deaths, of which 3,865 (31.4%) were cancer-related and 3,576 (29.1%) were attributed to CVD. Compared with a mixed diet of meat and vegetables, a mainly meat-based diet (hazard ratio [ HR] = 1.13; 95% confidence interval [ CI]: 1.02, 1.27) associated with a higher risk of all-cause mortality, while mainly vegetarian ( HR = 0.87; 95% CI: 0.78, 0.97) was linked to a reduced risk. Furthermore, there was a stronger correlation between mortality risk and dietary preference in the > 65 age range.
CONCLUSION
A meat-based diet was associated with an increased risk of all-cause mortality, whereas a mainly vegetarian diet was linked to a reduced risk.
Humans
;
China/epidemiology*
;
Middle Aged
;
Male
;
Female
;
Prospective Studies
;
Aged
;
Cardiovascular Diseases/mortality*
;
Diet/statistics & numerical data*
;
Neoplasms/mortality*
;
Adult
;
Cause of Death
;
Food Preferences
;
Proportional Hazards Models
;
Mortality
;
Cohort Studies
9.A new iridoid from Eucommia ulmoides
Shi-qi ZHOU ; Zhi-you HAO ; Meng YANG ; Chao-yuan XIAO ; Jun-yang ZHANG ; Bo-wen ZHANG ; Si-qi TAO ; Xiao-ke ZHENG ; Wei-sheng FENG
Acta Pharmaceutica Sinica 2024;59(7):2062-2068
Eleven compounds were isolated from
10.Metabonomic study of blood of mice with high-voltage electrical injury
Si-Yu CHEN ; Hui WANG ; Yan LUO ; Jia-Wen TAO ; Wen-Juan ZHANG ; Yang YUE ; Zheng-Ping YU ; Hui-Feng PI
Journal of Regional Anatomy and Operative Surgery 2024;33(2):100-106
Objective To explore the changes of metabonomics in blood of mice after high-voltage electric shock,then screen out the significantly changed differential metabolites and metabolic pathways.Methods The head of C57BL/6J mice was subjected to high-voltage electric shock(electric shock group)or exposed to acoustic and optical stimulation of high-voltage electric(control group),then the whole blood from mice were collected to separate serum.The dual platform combined metabonomic analysis based on gas chromatography-mass spectrometer(GC-MS)and liquid chromatography-mass spectrometer(LC-MS)was performed and orthogonal partial least squares discriminant analysis(OPLS-DA)was used to screen the differential metabolites and related metabolic pathways.Results A total of 415 differential metabolites were screened out in metabonomics in blood of mice after high-voltage electric shock,including 187 up-regulated and 228 down-regulated metabolites.These differentially metabolites were significantly enriched in metabolic pathways including central carbon metabolism in cancer,glucagon signaling pathway,etc.Conclusion By establishing the model of high-voltage electrical injury on experimental mice,this study reveals the significant change of metabolite content and metabolic pathway in blood by high-voltage electrical injury.Which provides a basis for the damage of blood metabolic activity by high-voltage electrical injury,and suggests the potential harm of high-voltage electrical injury to blood metabolic activity in the whole body.

Result Analysis
Print
Save
E-mail