1.Single-cell Protein Localization Method Based on Class Perception Graph Convolutional Network
Hao-Yang TANG ; Xin-Yue YAO ; Meng-Meng WANG ; Si-Cong YANG
Progress in Biochemistry and Biophysics 2025;52(9):2417-2427
ObjectiveThis study proposes a novel single-cell protein localization method based on a class perception graph convolutional network (CP-GCN) to overcome several critical challenges in protein microscopic image analysis, including the scarcity of cell-level annotations, inadequate feature extraction, and the difficulty in achieving precise protein localization within individual cells. The methodology involves multiple innovative components designed to enhance both feature extraction and localization accuracy. MethodsFirst, a class perception module (CPM) is developed to effectively capture and distinguish semantic features across different subcellular categories, enabling more discriminative feature representation. Building upon this, the CP-GCN network is designed to explore global features of subcellular proteins in multicellular environments. This network incorporates a category feature-aware module to extract protein semantic features aligned with label dimensions and establishes a subcellular relationship mining module to model correlations between different subcellular structures. By doing so, it generates co-occurrence embedding features that encode spatial and contextual relationships among subcellular locations, thereby improving feature representation. To further refine localization, a multi-scale feature analysis approach is employed using the K-means clustering algorithm, which classifies multi-scale features within each subcellular category and generates multi-cell class activation maps (CAMs). These CAMs highlight discriminative regions associated with specific subcellular locations, facilitating more accurate protein localization. Additionally, a pseudo-label generation strategy is introduced to address the lack of annotated single-cell data. This strategy segments multicellular images into single-cell images and assigns reliable pseudo-labels based on the CAM-predicted regions, ensuring high-quality training data for single-cell analysis. Under a transfer learning framework, the model is trained to achieve precise single-cell-level protein localization, leveraging both the extracted features and pseudo-labels for robust performance. ResultsExperimental validation on multiple single-cell test datasets demonstrates that the proposed method significantly outperforms existing approaches in terms of robustness and localization accuracy. Specifically, on the Kaggle 2021 dataset, the method achieves superior mean average precision (mAP) metrics across 18 subcellular categories, highlighting its effectiveness in diverse protein localization tasks. Visualization of the generated CAM results further confirms the model’s capability to accurately localize subcellular proteins within individual cells, even in complex multicellular environments. ConclusionThe integration of the CP-GCN network with a pseudo-labeling strategy enables the proposed method to effectively capture heterogeneous cellular features in protein images and achieve precise single-cell protein localization. This advancement not only addresses key limitations in current protein image analysis but also provides a scalable and accurate solution for subcellular protein studies, with potential applications in biomedical research and diagnostic imaging. The success of this method underscores the importance of combining advanced deep learning architectures with innovative training strategies to overcome data scarcity and improve localization performance in biological image analysis. Future work could explore the extension of this framework to other types of microscopic imaging and its application in large-scale protein interaction studies.
2.Material basis of toad oil and its pharmacodynamic effect in a mouse model of atopic dermatitis.
Yu-Yang LIU ; Xin-Wei YAN ; Bao-Lin BIAN ; Yao-Hua DING ; Xiao-Lu WEI ; Meng-Yao TIAN ; Wei WANG ; Hai-Yu ZHAO ; Yan-Yan ZHOU ; Hong-Jie WANG ; Ying YANG ; Nan SI
China Journal of Chinese Materia Medica 2025;50(1):165-177
This study aims to comprehensively analyze the material basis of toad visceral oil(hereafter referred to as toad oil), and explore the pharmacological effect of toad oil on atopic dermatitis(AD). Ultra-high performance liquid chromatography-linear ion trap/orbitrap high-resolution mass spectrometry(UHPLC-LTQ-Orbitrap-MS) and gas chromatography-mass spectrometry(GC-MS) were employed to comprehensively identify the chemical components in toad oil. The animal model of AD was prepared by the hapten stimulation method. The modeled animals were respectively administrated with positive drug(0.1% hydrocortisone butyrate cream) and low-and high-doses(1%, 10%) of toad oil by gavage. The effect of toad oil on AD was evaluated with the AD score, ear swelling rate, spleen index, and pathological section results as indicators. A total of 99 components were identified by UHPLC-LTQ-Orbitrap-MS, including 14 bufadienolides, 7 fatty acids, 6 alkaloids, 10 ketones, 18 amides, and other compounds. After methylation of toad oil samples, a total of 20 compounds were identified by GC-MS. Compared with the model group, the low-and high-dose toad oil groups showed declined AD score, ear swelling rate, and spleen index, alleviated skin lesions, and reduced infiltrating mast cells. This study comprehensively analyzes the chemical composition and clarifies the material basis of toad oil. Meanwhile, this study proves that toad oil has a good therapeutic effect on AD and is a reserve resource of traditional Chinese medicine for external use in the treatment of AD.
Animals
;
Dermatitis, Atopic/immunology*
;
Disease Models, Animal
;
Mice
;
Male
;
Gas Chromatography-Mass Spectrometry
;
Humans
;
Bufonidae
;
Oils/administration & dosage*
;
Chromatography, High Pressure Liquid
;
Female
;
Mice, Inbred BALB C
3.Anti-hepatic fibrosis effect and mechanism of Albiziae Cortex-Tribuli Fructus based on Nrf2/NLRP3/caspase-1 pathway.
Meng-Yuan ZHENG ; Jing-Wen HUANG ; Si-Chen JIANG ; Ze-Yu XIE ; Yi-Xiao XU ; Li YAO
China Journal of Chinese Materia Medica 2025;50(15):4129-4140
This study aims to explore whether Albiziae Cortex-Tribuli Fructus can exert an anti-hepatic fibrosis effect by regulating the nuclear factor E2-related factor 2(Nrf2)/NOD-like receptor protein 3(NLRP3)/cysteine protease-1(caspase-1) pathway and analyze its potential mechanism. In the in vivo experiment, a mouse model of hepatic fibrosis was established by subcutaneous injection of carbon tetrachloride. The levels of alanine aminotransferase(ALT), aspartate aminotransferase(AST), collagen type Ⅳ(ColⅣ), laminin(LN), procollagen type Ⅲ(PCⅢ), and hyaluronic acid(HA) in the serum of mice were measured using a fully automated biochemical analyzer and ELISA. Hematoxylin and eosin(HE) and Masson staining were used to observe inflammation and collagen fiber deposition in the liver tissue. Western blot and RT-qPCR were employed to detect the protein and mRNA expression of collagen type Ⅰ(collagen Ⅰ), α-smooth muscle actin(α-SMA), Nrf2, NLRP3, gasdermin D(GSDMD), and caspase-1 in the hepatic tissue. In the in vitro experiment, human hepatic stellate cells(HSC-LX2) were pretreated with Nrf2 agonist or inhibitor, followed by the addition of blank serum, AngⅡ + blank serum, and AngⅡ + Albiziae Cortex-Tribuli Fructus-containing serum for intervention. Western blot was used to detect the protein expression of Nrf2, NLRP3, GSDMD, caspase-1, α-SMA, GSDMD-N, and apoptosis-associated speck-like protein(ASC) in cells. DCFH-DA fluorescence probe was used to detect the cellular ROS levels. The results from the in vivo experiment showed that, compared with the model group, Albiziae Cortex-Tribuli Fructus significantly reduced the serum levels of AST, ALT, ColⅣ, LN, PCⅢ, and HA, reduced the infiltration of inflammatory cells and collagen fiber deposition in the liver tissue, significantly upregulated the protein and mRNA expression of Nrf2 in the liver tissue, and significantly downregulated the protein and mRNA expression of collagen I, α-SMA, NLRP3, GSDMD, and caspase-1 in the liver tissue. The results from the in vitro experiment showed that Nrf2 activation decreased the protein expression of NLRP3, GSDMD, caspase-1, α-SMA, GSDMD-N, ASC, and ROS levels in HSC-LX2, while Nrf2 inhibition showed the opposite trend. Furthermore, Albiziae Cortex-Tribuli Fructus-containing serum directly decreased the expression of the above proteins and ROS levels. In conclusion, Albiziae Cortex-Tribuli Fructus can effectively improve hepatic fibrosis, and its mechanism of action may involve inhibiting pyroptosis through the regulation of the Nrf2/NLRP3/caspase-1 pathway.
Animals
;
NF-E2-Related Factor 2/genetics*
;
Liver Cirrhosis/genetics*
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Caspase 1/genetics*
;
Male
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Signal Transduction/drug effects*
;
Humans
;
Liver/metabolism*
;
Mice, Inbred C57BL
;
Plant Extracts
;
Tribulus
4.Protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on a yorkshire model of brain injury after traumatic blood loss.
Xiang-Yu SONG ; Yang-Hui DONG ; Zhi-Bo JIA ; Lei-Jia CHEN ; Meng-Yi CUI ; Yan-Jun GUAN ; Bo-Yao YANG ; Si-Ce WANG ; Sheng-Feng CHEN ; Peng-Kai LI ; Heng CHEN ; Hao-Chen ZUO ; Zhan-Cheng YANG ; Wen-Jing XU ; Ya-Qun ZHAO ; Jiang PENG
Chinese Journal of Traumatology 2025;28(6):469-476
PURPOSE:
To investigate the protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on ischemic hypoxic injury of yorkshire brain tissue caused by traumatic blood loss.
METHODS:
This article performed a random controlled trial. Brain tissue of 7 yorkshire was selected and divided into the sub-low temperature anterograde machine perfusion group (n = 4) and the blank control group (n = 3) using the random number table method. A yorkshire model of brain tissue injury induced by traumatic blood loss was established. Firstly, the perfusion temperature and blood oxygen saturation were monitored in real-time during the perfusion process. The number of red blood cells, hemoglobin content, NA+, K+, and Ca2+ ions concentrations and pH of the perfusate were detected. Following perfusion, we specifically examined the parietal lobe to assess its water content. The prefrontal cortex and hippocampus were then dissected for histological evaluation, allowing us to investigate potential regional differences in tissue injury. The blank control group was sampled directly before perfusion. All statistical analyses and graphs were performed using GraphPad Prism 8.0 Student t-test. All tests were two-sided, and p value of less than 0.05 was considered to indicate statistical significance.
RESULTS:
The contents of red blood cells and hemoglobin during perfusion were maintained at normal levels but more red blood cells were destroyed 3 h after the perfusion. The blood oxygen saturation of the perfusion group was maintained at 95% - 98%. NA+ and K+ concentrations were normal most of the time during perfusion but increased significantly at about 4 h. The Ca2+ concentration remained within the normal range at each period. Glucose levels were slightly higher than the baseline level. The pH of the perfusion solution was slightly lower at the beginning of perfusion, and then gradually increased to the normal level. The water content of brain tissue in the sub-low and docile perfusion group was 78.95% ± 0.39%, which was significantly higher than that in the control group (75.27% ± 0.55%, t = 10.49, p < 0.001), and the difference was statistically significant. Compared with the blank control group, the structure and morphology of pyramidal neurons in the prefrontal cortex and CA1 region of the hippocampal gyrus were similar, and their integrity was better. The structural integrity of granulosa neurons was destroyed and cell edema increased in the perfusion group compared with the blank control group. Immunofluorescence staining for glail fibrillary acidic protein and Iba1, markers of glial cells, revealed well-preserved cell structures in the perfusion group. While there were indications of abnormal cellular activity, the analysis showed no significant difference in axon thickness or integrity compared to the 1-h blank control group.
CONCLUSIONS
Mild hypothermic machine perfusion can improve ischemia and hypoxia injury of yorkshire brain tissue caused by traumatic blood loss and delay the necrosis and apoptosis of yorkshire brain tissue by continuous oxygen supply, maintaining ion homeostasis and reducing tissue metabolism level.
Animals
;
Perfusion/methods*
;
Disease Models, Animal
;
Brain Injuries/etiology*
;
Swine
;
Male
;
Hypothermia, Induced/methods*
5.Global research trends in zoonotic diseases from a One Health perspective
Si-Meng YAO ; Sheng-Bo CAO ; Cui-Xia LI
Chinese Journal of Zoonoses 2024;40(10):994-1002
In accordance with the One Health concept,this study was aimed at exploring research trends and major topics in global zoonotic diseases,and providing suggestions for the prevention and control of zoonotic diseases in China.Using biblio-metric analysis,we analyzed 289 411 relevant articles in the SCIE database from 2012 to 2022 in the field of zoonotic diseases.We conducted in-depth analysis of publication trends,research themes,and cutting-edge topics in the field of zoonotic diseases.The number of publications in the field of zoonotic diseases has significantly increased since 2019.The United States had the most publications in this field,and was followed by China,which has shown strong growth.Further analysis of co-occurrence clustering of keywords in 7 115 highly cited articles in zoonotic diseases in the past 11 years revealed three major research themes:animal health,human health,and environmental health,according to the One Health concept.Keyword evolution a-nalysis showed that zoonotic disease articles were broadly related to issues such as"food safety"and"microbial resistance"in earlier years,whereas"COVID-19,""COVID-19 variants,"and"COVID-19 vaccine"have become recent research hotspots.Practicing the One Health concept and promoting interdisciplinary,interdepartmental,and interregional collaboration are crucial for enhancing the prevention and control of zoonotic diseases in China,thereby safeguarding national security,public health,and ecological safety.
6.Design of wireless transmission system of ECG signal in dynamic ECG monitor
Chinese Medical Equipment Journal 2024;45(6):28-32
Objective To design an ECG signal wireless transmission system for the dynamic ECG monitor.Methods The ECG signal wireless transmission system developed was composed of an ECG signal acquisition module,a wireless transceiver module,a wireless communication protocol module and a digital filtering module.The ECG signal acquisition module consisted of a digital interface circuit,an A/D converter microprocessor and an ECG amplification circuit.The wireless transceiver module was made up of a wireless RF unit,a crystal oscillator circuit,an RF circuit,a debug serial port,a register,a power supply module and a reset circuit.The wireless communication protocol module involved in a data link layer and a physical layer,of which the data link layer had two mechanisms of automatic response and frequency modulation.The digital filtering module mainly included a digital filter,a signal input module,a delay unit and a coefficient registers,and the digital filter was designed using the equiripple method and realized signal denoising by converting ECG signals into output sequences.The performance of this system for wireless transmission of ECG signals at different proximity remote transmission distances was validated with the ECG signal wireless transmission methods based on ZigBee networking and general packet radio service(GPRS)and based on wireless networking module used as comparative methods.Results The system developed gained advan-tages over the other two methods in average rate,sucess rate,average time consumption and average frequency for re-transmission of ECG signal wireless transmission.Conclusion The system developed can be used for efficient,stable and clear ECG signal wireless transmission for the dynamic ECG monitor.[Chinese Medical Equipment Journal,2024,45(6):28-32]
7.Targeting the chromatin structural changes of antitumor immunity
Li NIAN-NIAN ; Lun DENG-XING ; Gong NINGNING ; Meng GANG ; Du XIN-YING ; Wang HE ; Bao XIANGXIANG ; Li XIN-YANG ; Song JI-WU ; Hu KEWEI ; Li LALA ; Li SI-YING ; Liu WENBO ; Zhu WANPING ; Zhang YUNLONG ; Li JIKAI ; Yao TING ; Mou LEMING ; Han XIAOQING ; Hao FURONG ; Hu YONGCHENG ; Liu LIN ; Zhu HONGGUANG ; Wu YUYUN ; Liu BIN
Journal of Pharmaceutical Analysis 2024;14(4):460-482
Epigenomic imbalance drives abnormal transcriptional processes,promoting the onset and progression of cancer.Although defective gene regulation generally affects carcinogenesis and tumor suppression networks,tumor immunogenicity and immune cells involved in antitumor responses may also be affected by epigenomic changes,which may have significant implications for the development and application of epigenetic therapy,cancer immunotherapy,and their combinations.Herein,we focus on the impact of epigenetic regulation on tumor immune cell function and the role of key abnormal epigenetic processes,DNA methylation,histone post-translational modification,and chromatin structure in tumor immunogenicity,and introduce these epigenetic research methods.We emphasize the value of small-molecule inhibitors of epigenetic modulators in enhancing antitumor immune responses and discuss the challenges of developing treatment plans that combine epigenetic therapy and immuno-therapy through the complex interaction between cancer epigenetics and cancer immunology.
8.Clinical diagnosis of group A streptococcal pharyngitis and progress in the application of scoring systems
Si-Yu CHEN ; Meng-Yang GUO ; Jiang-Hong DENG ; Kai-Hu YAO
Chinese Journal of Contemporary Pediatrics 2024;26(8):893-898
Pharyngitis can be caused by various pathogens,including viruses and bacteria.Group A streptococcus(GAS)is the most common bacterial cause of pharyngitis.However,distinguishing GAS pharyngitis from other types of upper respiratory tract infections is challenging in clinical settings.This often leads to empirical treatments and,consequently,the overuse of antimicrobial drugs.With the advancement of antimicrobial drug management and healthcare payment reform initiatives in China,reducing unnecessary testing and prescriptions of antimicrobial drugs is imperative.To promote standardized diagnosis and treatment of GAS pharyngitis,this article reviews various international guidelines on the clinical diagnosis and differential diagnosis of GAS pharyngitis,particularly focusing on clinical scoring systems guiding laboratory testing and antimicrobial treatment decisions for GAS pharyngitis and their application recommendations,providing a reference for domestic researchers and clinical practitioners.
9.Study on inhibitory effect of alisol B on non-small cell lung cancer based on network pharmacology and its mechanism
Liu-Yan XIANG ; Wen-Xuan WANG ; Si-Meng GU ; Xiao-Qian ZHANG ; Lu-Yao LI ; Yu-Qian LI ; Yuan-Ru WANG ; Qi-Qi LEI ; Xue YANG ; Ya-Jun CAO ; Xue-Jun LI
Chinese Pharmacological Bulletin 2024;40(12):2375-2384
Aim To explore the potential genes and mechanism of alisol B in the treatment of non-small cell lung cancer(NSCLC).Methods The proliferation and migration of NSCLC cells were detected by CCK-8 and Transwell.Genes of NSCLC and alisol B were col-lected through TCGA and compound gene prediction database,and their intersection genes were obtained.The network of protein-protein interaction(PPI)was constructed by using String database,and the top 20 key nodes were screened out,and the prognosis-related proteins related to the prognosis of NSCLC were screened out by using R language,and the intersection of them was obtained.The potential mechanism of ali-sol B on NSCLC was explored by KEGG and GO en-richment analysis and the relationship between related genes and immune cells,which was verified by cell-lev-el experiments.Results Alisol B inhibited the cell activity and migration ability of NSCLC cells.Five im-portant genes were identified by network pharmacologi-cal analysis:CCNE1,CDK1,COL1A1,COL1A2 and COL3A1.The results of cell experiment showed that al-isol B down-regulated the expression of Cyclin E1,CDK1 and COL1A2 in NSCLC cells.In addition,alisol B could inhibit the expression of COL1A2 and M2 macrophage marker CD206 in macrophages.Conclu-sions Alisol B may inhibit the proliferation of tumor cells by down-regulating CDK1 and Cyclin E1,and may affect the function of macrophages by inhibiting COL1A2,thus regulating the tumor immune microenvi-ronment and inhibiting NSCLC.
10.Study on biomarkers of acteoside in treating puromycin aminonucleoside nephropathy in young rats based on non-targeted urine metabolomics technology.
Meng-Xiao WANG ; Ke-Ke LUO ; Wen-Ya GAO ; Meng-Yao TIAN ; Hai-Yu ZHAO ; Nan SI ; Bao-Lin BIAN ; Xiao-Lu WEI ; Hong-Jie WANG ; Yan-Yan ZHOU
China Journal of Chinese Materia Medica 2023;48(21):5898-5907
This study aims to reveal the endogenous metabolic characteristics of acteoside in the young rat model of purinomycin aminonucleoside nephropathy(PAN) by non-targeted urine metabolomics and decipher the potential mechanism of action. Biochemical indicators in the urine of rats from each group were determined by an automatic biochemical analyzer. The potential biomarkers and related core metabolic pathways were identified by ultra-high performance liquid chromatography coupled with linear ion trap-Orbitrap mass spectrometry(UHPLC-LTQ-Orbitrap MS) combined with principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA). MetaboAnalyst 5.0 was used to establish the receiver operating characteristic(ROC) curve for evaluating the clinical diagnostic performance of core metabolites. The results showed that acteoside significantly decreased urinary protein-to-creatinine ratio in PAN young rats. A total of 17 differential metabolites were screened out by non-targeted urine metabolomics in PAN young rats and they were involved in phenylalanine metabolism and phenylalanine, tyrosine and tryptophan biosynthesis. Thirtten differential metabolites were screened by acteoside intervention in PAN young rats, and they were involved in phenylalanine metabolism and arginine and proline metabolism. Among them, leucylproline and acetophenone were the differential metabolites that were significantly recovered after acteoside treatment. These pathways suggest that acteoside treats PAN in young rats by regulating amino acid metabolism. The area under the curve of two core biomarkers, leucylproline and acetophenone, were both greater than 0.9. In summary, acteoside may restore amino acid metabolism by regulating endogenous differential metabolites in PAN young rats, which will help to clarify the mechanism of acteoside in treating chronic glomerulonephritis in children. The characteristic biomarkers screened out have a high diagnostic value for evaluating the treatment of chronic glomerulonephritis in children with acteoside.
Humans
;
Child
;
Rats
;
Animals
;
Puromycin Aminonucleoside
;
Metabolomics/methods*
;
Biomarkers/urine*
;
Chromatography, High Pressure Liquid/methods*
;
Acetophenones
;
Glomerulonephritis
;
Phenylalanine
;
Amino Acids

Result Analysis
Print
Save
E-mail