1.Rubioncolin C targets cathepsin D to induce autophagosome accumulation and suppress gastric cancer.
Liang ZHANG ; Jun-Jie CHEN ; Man-Xiang GU ; Yi-Fan ZHONG ; Yuan SI ; Ying LIU
China Journal of Chinese Materia Medica 2025;50(5):1267-1275
This study aimed to explore the molecular mechanism of rubioncolin C(RuC) in inhibiting gastric cancer(GC). AGS and MGC803 cell lines were selected as cellular models. After treating the cells with RuC at different concentrations, the effects of RuC on the proliferation ability of GC cells were assessed using the CCK-8 method, real-time cellular analysis(RTCA), and colony formation assays. Transmission electron microscopy was used to observe subcellular structural changes. Immunofluorescence was applied to detect LC3 fluorescent foci. Acridine orange staining was used to evaluate the state of intracellular lysosomes. Western blot was employed to detect the expression of autophagy-related proteins LC3Ⅱ, P62, and lysosomal cathepsin D(CTSD). The SuperPred online tool was used to predict the target proteins that bound to RuC, and molecular docking analysis was conducted to identify the interaction sites between RuC and CTSD. The drug affinity responsive target stability(DARTS) assay was performed to detect the direct binding interaction between RuC and CTSD. The results showed that RuC significantly inhibited the proliferation and colony formation of GC cells at low concentrations, with 24-hour half-maximal inhibitory concentrations(IC_(50)) of 3.422 and 2.697 μmol·L~(-1) for AGS and MGC803 cells, respectively. After 24 hours of treatment with RuC at concentrations of 1, 2, and 3 μmol·L~(-1), the colony formation rates for AGS cells were 61.0%±1.5%, 28.0%±0.5%, and 18.2%±0.5%, respectively, while the rates for MGC803 cells were 56.0%±0.5%, 23.3%±1.0%, and 11.8%±1.0%, all of which were significantly reduced. Transmission electron microscopy revealed that RuC promoted an increase in autophagosome formation in GC cells. Immunofluorescence detection showed that LC3 fluorescent foci of GC cells increased with the increase in RuC dose. RuC up-regulated the expression of autophagy-related proteins LC3Ⅱ and P62 in GC cells. Acridine orange staining indicated that RuC altered the acidic environment of lysosomes. SuperPred online prediction identified CTSD as a potential target protein of RuC. Western blot analysis revealed that RuC induced the up-regulation of the inactive precursor of CTSD in GC cells. CTSD activity assays indicated that RuC reduced the activity of CTSD. Molecular docking simulations found that RuC bound to the substrate-binding region of CTSD, forming hydrogen bonds with the Tyr205 and Asp231 residues. Microscale thermophoresis and DARTS assays further confirmed that RuC directly bound to CTSD. In summary, RuC inhibits lysosomal activity by targeting and down-regulating the expression of CTSD, thereby inducing autophagosome accumulation in GC cells.
Humans
;
Stomach Neoplasms/enzymology*
;
Cathepsin D/chemistry*
;
Cell Line, Tumor
;
Molecular Docking Simulation
;
Cell Proliferation/drug effects*
;
Autophagosomes/metabolism*
;
Autophagy/drug effects*
2.Exploration of pharmacodynamic material basis and mechanism of Jinbei Oral Liquid against idiopathic pulmonary fibrosis based on UHPLC-Q-TOF-MS/MS and network pharmacology.
Jin-Chun LEI ; Si-Tong ZHANG ; Xian-Run HU ; Wen-Kang LIU ; Xue-Mei CHENG ; Xiao-Jun WU ; Wan-Sheng CHEN ; Man-Lin LI ; Chang-Hong WANG
China Journal of Chinese Materia Medica 2025;50(10):2825-2840
This study aims to explore the pharmacodynamic material basis of Jinbei Oral Liquid(JBOL) against idiopathic pulmonary fibrosis(IPF) based on serum pharmacochemistry and network pharmacology. The ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UHPLC-Q-TOF-MS/MS) technology was employed to analyze and identify the components absorbed into rat blood after oral administration of JBOL. Combined with network pharmacology, the study explored the pharmacodynamic material basis and potential mechanism of JBOL against IPF through protein-protein interaction(PPI) network construction, "component-target-pathway" analysis, Gene Ontology(GO) functional enrichment, and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis. First, a total of 114 compounds were rapidly identified in JBOL extract according to the exact relative molecular mass, fragment ions, and other information of the compounds with the use of reference substances and a self-built compound database. Second, on this basis, 70 prototype components in blood were recognized by comparing blank serum with drug-containing serum samples, including 28 flavonoids, 25 organic acids, 4 saponins, 4 alkaloids, and 9 others. Finally, using these components absorbed into blood as candidates, the study obtained 212 potential targets of JBOL against IPF. The anti-IPF mechanism might involve the action of active ingredients such as glycyrrhetinic acid, cryptotanshinone, salvianolic acid B, and forsythoside A on core targets like AKT1, TNF, and ALB and thereby the regulation of multiple signaling pathways including PI3K/AKT, HIF-1, and TNF. In conclusion, JBOL exerts the anti-IPF effect through multiple components, targets, and pathways. The results would provide a reference for further study on pharmacodynamic material basis and pharmacological mechanism of JBOL.
Drugs, Chinese Herbal/pharmacokinetics*
;
Animals
;
Tandem Mass Spectrometry
;
Network Pharmacology
;
Rats
;
Chromatography, High Pressure Liquid
;
Rats, Sprague-Dawley
;
Male
;
Idiopathic Pulmonary Fibrosis/metabolism*
;
Humans
;
Administration, Oral
;
Protein Interaction Maps/drug effects*
;
Signal Transduction/drug effects*
3.A Study of Flow Sorting Lymphocyte Subsets to Detect Epstein-Barr Virus Reactivation in Patients with Hematological Malignancies.
Hui-Ying LI ; Shen-Hao LIU ; Fang-Tong LIU ; Kai-Wen TAN ; Zi-Hao WANG ; Han-Yu CAO ; Si-Man HUANG ; Chao-Ling WAN ; Hai-Ping DAI ; Sheng-Li XUE ; Lian BAI
Journal of Experimental Hematology 2025;33(5):1468-1475
OBJECTIVE:
To analyze the Epstein-Barr virus (EBV) load in different lymphocyte subsets, as well as clinical characteristics and outcomes in patients with hematologic malignancies experiencing EBV reactivation.
METHODS:
Peripheral blood samples from patients were collected. B, T, and NK cells were isolated sorting with magnetic beads by flow cytometry. The EBV load in each subset was quantitated by real-time quantitative polymerase chain reaction (RT-qPCR). Clinical data were colleted from electronic medical records. Survival status was followed up through outpatient visits and telephone calls. Statistical analyses were performed using SPSS 25.0.
RESULTS:
A total of 39 patients with hematologic malignancies were included, among whom 35 patients had undergone allogeneic hematopoietic stem cell transplantation (allo-HSCT). The median time to EBV reactivation was 4.8 months (range: 1.7-57.1 months) after allo-HSCT. EBV was detected in B, T, and NK cells in 20 patients, in B and T cells in 11 patients, and only in B cells in 4 patients. In the 35 patients, the median EBV load in B cells was 2.19×104 copies/ml, significantly higher than that in T cells (4.00×103 copies/ml, P <0.01) and NK cells (2.85×102 copies/ml, P <0.01). Rituximab (RTX) was administered for 32 patients, resulting in EBV negativity in 32 patients with a median time of 8 days (range: 2-39 days). Post-treatment analysis of 13 patients showed EBV were all negative in B, T, and NK cells. In the four non-transplant patients, the median time to EBV reactivation was 35 days (range: 1-328 days) after diagnosis of the primary disease. EBV was detected in one or two subsets of B, T, or NK cells, but not simultaneously in all three subsets. These patients received a combination chemotherapy targeting at the primary disease, with 3 patients achieving EBV negativity, and the median time to be negative was 40 days (range: 13-75 days).
CONCLUSION
In hematologic malignancy patients after allo-HSCT, EBV reactivation commonly involves B, T, and NK cells, with a significantly higher viral load in B cells compared to T and NK cells. Rituximab is effective for EBV clearance. In non-transplant patients, EBV reactivation is restricted to one or two lymphocyte subsets, and clearance is slower, highlighting the need for prompt anti-tumor therapy.
Humans
;
Hematologic Neoplasms/virology*
;
Herpesvirus 4, Human/physiology*
;
Epstein-Barr Virus Infections
;
Hematopoietic Stem Cell Transplantation
;
Virus Activation
;
Lymphocyte Subsets/virology*
;
Flow Cytometry
;
Killer Cells, Natural/virology*
;
Male
;
Female
;
B-Lymphocytes/virology*
;
Viral Load
;
Adult
;
T-Lymphocytes/virology*
;
Middle Aged
4.Inflammatory and Immunomodulatory Effects of Tripterygium wilfordii Multiglycoside in Mouse Models of Psoriasis Keratinocytes.
Shuo ZHANG ; Hong-Jin LI ; Chun-Mei YANG ; Liu LIU ; Xiao-Ying SUN ; Jiao WANG ; Si-Ting CHEN ; Yi LU ; Man-Qi HU ; Ge YAN ; Ya-Qiong ZHOU ; Xiao MIAO ; Xin LI ; Bin LI
Chinese journal of integrative medicine 2024;30(3):222-229
OBJECTIVE:
To determine the role of Tripterygium wilfordii multiglycoside (TGW) in the treatment of psoriatic dermatitis from a cellular immunological perspective.
METHODS:
Mouse models of psoriatic dermatitis were established by imiquimod (IMQ). Twelve male BALB/c mice were assigned to IMQ or IMQ+TGW groups according to a random number table. Histopathological changes in vivo were assessed by hematoxylin and eosin staining. Ratios of immune cells and cytokines in mice, as well as PAM212 cell proliferation in vitro were assessed by flow cytometry. Pro-inflammatory cytokine expression was determined using reverse transcription quantitative polymerase chain reaction.
RESULTS:
TGW significantly ameliorated the severity of IMQ-induced psoriasis-like mouse skin lesions and restrained the activation of CD45+ cells, neutrophils and T lymphocytes (all P<0.01). Moreover, TGW significantly attenuated keratinocytes (KCs) proliferation and downregulated the mRNA levels of inflammatory cytokines including interleukin (IL)-17A, IL-23, tumor necrosis factor α, and chemokine (C-X-C motif) ligand 1 (P<0.01 or P<0.05). Furthermore, it reduced the number of γ δ T17 cells in skin lesion of mice and draining lymph nodes (P<0.01).
CONCLUSIONS
TGW improved psoriasis-like inflammation by inhibiting KCs proliferation, as well as the associated immune cells and cytokine expression. It inhibited IL-17 secretion from γ δ T cells, which improved the immune-inflammatory microenvironment of psoriasis.
Male
;
Animals
;
Mice
;
Tripterygium
;
Psoriasis/drug therapy*
;
Keratinocytes
;
Skin Diseases/metabolism*
;
Cytokines/metabolism*
;
Imiquimod/metabolism*
;
Dermatitis/pathology*
;
Disease Models, Animal
;
Mice, Inbred BALB C
;
Skin/metabolism*
5.Ginkgo biloba extract activates Nrf2/ARE pathway to improve vascular endothelial dysfunction induced by chronic intermittent hypoxia in rats
Sheng-Yong SI ; Hong-Man LI ; Si-Si MIAO ; Xiao HAN ; Zhi-Jing LI ; Chao-Jun WEI ; Da-Nan LIU
Chinese Pharmacological Bulletin 2024;40(10):1837-1844
Aim To investigate the effects of Ginkgo biloba extract(GBE)on vascular endothelial dysfunc-tion induced by chronic intermittent hypoxia(CIH)in rats and its related mechanisms.Methods The CIH rat model was established,and 50 and 100 mg·kg-1 GBE was administered by intragastric administration.The systolic blood pressure(SBP)of the tail artery was detected in each group.HE staining was used to detect the morphology of aorta tissue.DAF-FM DA staining and nitric reductase assay were used to detect NO levels.ELISA was used to detect serum ET-1,TNF-α and IL-6 levels.DHE staining was used to de-tect reactive oxygen species(ROS)levels of aortic tis-sue.Kits were used to detect the serum levels of MDA,SOD and GSH-Px.Western blot was used to detect the levels of VCAM-1,ICAM-1,nucleus Nrf2,HO-1 and NQO1 of aortic tissue.Results GBE sig-nificantly decreased the levels of SBP,ET-1,ROS,MDA,VCAM-1,ICAM-1,TNF-α and IL-6,and sig-nificantly increased the levels of NO,SOD,GSH-Px,nuclear Nrf2,HO-1 and NQO1 in CIH rats.GBE sig-nificantly improved the histomorphology of aorta in CIH rats.Conclusions GBE can improve vascular endo-thelial dysfunction and reduce blood pressure in CIH model rats.The mechanism may be related to the acti-vation of Nrf2/ARE pathway and the inhibition of oxi-dative stress and inflammation by GBE.
6.Quality Evaluation and Suggestions on Pharmacopoeia Standard of Eucommiae Folium
Ping WANG ; Shaojia LIANG ; Wenwen ZHANG ; Weihong FENG ; Hong YI ; Chun LI ; Fengqian GUO ; Qin SI ; Dejing FU ; Man GONG ; Zhengtao WANG ; Hongchu ZHENG ; Xiaoqian LIU ; Zhimin WANG
Chinese Journal of Experimental Traditional Medical Formulae 2023;29(2):10-17
ObjectiveTo establish a quantitative analysis multi-components by single marker method (QAMS) for five main components (aucubin, geniposidic acid, chlorogenic acid, asperuloside and rutin) in Eucommiae Folium, to verify its feasibility and applicability in the determination of Eucommiae Folium, so as to provide a scientific basis for the development of quality standard of this herb. MethodHigh performance liquid chromatography was performed on a Welch Boltmatetm™ C18 column (4.6 mm×100 mm, 2.7 μm) with methanol (A)-0.2% phosphoric acid aqueous solution (B) as the mobile phase for gradient elution (0-8 min, 3%A; 8-10 min, 3%-11%A; 10-26 min, 11%A; 26-27 min, 11%-25%A; 27-60 min, 25%-32%A), the column temperature was set at 30 ℃, the flow rate was 0.6 mL·min-1, the detection wavelengths were at 210 nm and 254 nm. Chlorogenic acid was used as an internal reference to establish the relative correction factors (f) between it and the other four components, and the contents of the five components in 14 batches of Eucommiae Folium were determined by QAMS and external standard method (ESM), respectively. ResultThe f values of chlorogenic acid to aucubin, geniposidic acid, asperuloside and rutin were 3.13, 1.45, 2.64 and 0.56, respectively. Repeatability was good under different experimental conditions, relative standard deviation (RSD) was <5.0%. The contents of aucubin, geniposidic acid, chlorogenic acid, asperuloside and rutin in 14 batches of Eucommiae Folium were 1.340-28.975, 0.252-36.086, 10.016-27.443, 1.396-8.646, 0.533-1.766 mg·g-1, respectively. There were no significant difference between content results of QAMS and that of ESM (RSD<5.0%). ConclusionQAMS established with chlorogenic acid as the internal reference can be used to determine the contents of five components in Eucommiae Folium, and this method is simple and accurate. After comprehensive evaluation, the quality standard of Eucommiae Folium in subsequent editions of Chinese Pharmacopoeia is suggested that three main active components, chlorogenic acid, aucubin and geniposidic acid, are selected as quality markers, and their content limits are recommended not less than 1.5%, 1.0% and 1.0%, respectively. This quality standard draft can avoid the potential quality risk due to poor specificity and low content limit of the index component (chlorogenic acid) in the previous editions of Chinese Pharmacopoeia.
7.Current situation of acupuncture and moxibustion patents in China and abroad.
Si-Yuan ZHEN ; Yang LIU ; Man GAO ; Shen-Yi LU ; Hai-Yan LI
Chinese Acupuncture & Moxibustion 2023;43(3):362-366
The patents of acupuncture and moxibustion in China and abroad was analyzed, aiming to provide support for the innovative development of acupuncture industry. With the China Think Tank of Patent of Traditional Chinese Medicine and the PatSnap database as data sources, based on the mathematical statistics method, the application trend, legal status, patent types, transformation and distribution of major technical fields of acupuncture patents in China and abroad were analyzed. As a result, a total of 53,422 acupuncture patents were screened, involving 49 countries and 4 organizations. The patent types were mainly utility model patents. Although the application number of acupuncture patent had increased rapidly, the average patent conversion rate was generally low, approximately 4%. In the context of global economic integration, the acupuncture industry is developing at a high speed. It is suggested to take advantage of the "Belt and Road Initiative" to improve the international acceptance of acupuncture and moxibustion, adhere to the principle of attaching equal importance to the number and quality of patents, promote the in-depth cooperation of industry-university-research, and promote high-quality development of acupuncture and moxibustion.
Humans
;
Moxibustion
;
Acupuncture Therapy
;
China
;
Medicine, Chinese Traditional
;
Databases, Factual
8.Expression of ROBO3 and Its Effect on Cell Proliferation and Apoptosis in Pediatric Patients with Acute Myeloid Leukemia.
Man-Si CAI ; Ai-Ling LUO ; Xiao-Ping LIU ; Hua JIANG ; Xiao-Dan LIU
Journal of Experimental Hematology 2022;30(5):1324-1330
OBJECTIVE:
To investigate the expression of ROBO3 in pediatric AML patients and explore its function on cell proliferation and apoptosis.
METHODS:
The expression of ROBO3 in pediatric AML patients at different treatment stage was detected by real-time quantitative polymerase chain reaction (RT-qPCR). The relationship between the expression of ROBO3 and clinic pathological characteristics in newly diagnosed pediatric AML patients was analyzed. Moreover, the effects of ROBO3 on the proliferation and apoptosis of AML cell lines HL-60 and THP-1 were estimated by using CCK-8 and flow cytometry after transfection with ROBO3 siRNA.
RESULTS:
It was found that ROBO3 expression was significantly increased in most of newly diagnosed pediatric AML patients, especially in non-M3 subtype, younger patients (<10 years old), and high risk group, compared to corresponding controls. Furthermore, the expression level of ROBO3 was sharply decreased in patients who achieved complete remission. Targeting ROBO3 significantly inhibited AML cell proliferation, as well as increased apoptosis by ROBO3 siRNA transfection in vitro.
CONCLUSION
ROBO3 is differentially expressed within distinct subtypes of the pediatric AML patients, which suggested that ROBO3 may be a potential biomarker and a new therapeutic target for pediatric AML.
Apoptosis
;
Cell Line, Tumor
;
Cell Proliferation
;
Child
;
Humans
;
Leukemia, Myeloid, Acute/genetics*
;
MicroRNAs/genetics*
;
RNA, Small Interfering
;
Receptors, Cell Surface
;
Sincalide
9.Differential transcriptomic landscapes of multiple organs from SARS-CoV-2 early infected rhesus macaques.
Chun-Chun GAO ; Man LI ; Wei DENG ; Chun-Hui MA ; Yu-Sheng CHEN ; Yong-Qiao SUN ; Tingfu DU ; Qian-Lan LIU ; Wen-Jie LI ; Bing ZHANG ; Lihong SUN ; Si-Meng LIU ; Fengli LI ; Feifei QI ; Yajin QU ; Xinyang GE ; Jiangning LIU ; Peng WANG ; Yamei NIU ; Zhiyong LIANG ; Yong-Liang ZHAO ; Bo HUANG ; Xiao-Zhong PENG ; Ying YANG ; Chuan QIN ; Wei-Min TONG ; Yun-Gui YANG
Protein & Cell 2022;13(12):920-939
SARS-CoV-2 infection causes complicated clinical manifestations with variable multi-organ injuries, however, the underlying mechanism, in particular immune responses in different organs, remains elusive. In this study, comprehensive transcriptomic alterations of 14 tissues from rhesus macaque infected with SARS-CoV-2 were analyzed. Compared to normal controls, SARS-CoV-2 infection resulted in dysregulation of genes involving diverse functions in various examined tissues/organs, with drastic transcriptomic changes in cerebral cortex and right ventricle. Intriguingly, cerebral cortex exhibited a hyperinflammatory state evidenced by significant upregulation of inflammation response-related genes. Meanwhile, expressions of coagulation, angiogenesis and fibrosis factors were also up-regulated in cerebral cortex. Based on our findings, neuropilin 1 (NRP1), a receptor of SARS-CoV-2, was significantly elevated in cerebral cortex post infection, accompanied by active immune response releasing inflammatory factors and signal transmission among tissues, which enhanced infection of the central nervous system (CNS) in a positive feedback way, leading to viral encephalitis. Overall, our study depicts a multi-tissue/organ transcriptomic landscapes of rhesus macaque with early infection of SARS-CoV-2, and provides important insights into the mechanistic basis for COVID-19-associated clinical complications.
Animals
;
COVID-19/genetics*
;
Macaca mulatta
;
SARS-CoV-2/genetics*
;
Transcriptome
10.Protective Effect of Angelicae Sinensis Radix-Chuanxiong Rhizoma Medicated Serum Against H2O2-induced Oxidative Damage of PC12 Cells Based on Nrf2/ARE Signaling Pathway
Man-xue YIN ; Yu-jie LIN ; Wen-zhi HUANG ; Si-jun LIU ; Xiao-lan ZHOU ; Qing-guang WU
Chinese Journal of Experimental Traditional Medical Formulae 2021;27(16):67-74
Objective:To investigate the protective effect and molecular mechanism of Angelicae Sinensis Radix-Chuanxiong Rhizoma medicated serum (ASRCRS) against oxidative damage of PC12 cells induced by H2O2. Method:Oxidative damage of PC12 cells was induced by H2O2

Result Analysis
Print
Save
E-mail