1.Identification of novel pathogenic variants in genes related to pancreatic β cell function: A multi-center study in Chinese with young-onset diabetes.
Fan YU ; Yinfang TU ; Yanfang ZHANG ; Tianwei GU ; Haoyong YU ; Xiangyu MENG ; Si CHEN ; Fengjing LIU ; Ke HUANG ; Tianhao BA ; Siqian GONG ; Danfeng PENG ; Dandan YAN ; Xiangnan FANG ; Tongyu WANG ; Yang HUA ; Xianghui CHEN ; Hongli CHEN ; Jie XU ; Rong ZHANG ; Linong JI ; Yan BI ; Xueyao HAN ; Hong ZHANG ; Cheng HU
Chinese Medical Journal 2025;138(9):1129-1131
2.Exogenous administration of zinc chloride improves lung ischemia/reperfusion injury in rats.
Shu-Yuan WANG ; Jun-Peng XU ; Yuan CHENG ; Man HUANG ; Si-An CHEN ; Zhuo-Lun LI ; Qi-Hao ZHANG ; Yong-Yue DAI ; Li-Yi YOU ; Wan-Tie WANG
Acta Physiologica Sinica 2025;77(5):811-819
The aim of this study was to investigate the contribution of lung zinc ions to pathogenesis of lung ischemia/reperfusion (I/R) injury in rats. Male Sprague Dawley (SD) rats were randomly divided into control group, lung I/R group (I/R group), lung I/R + low-dose zinc chloride group (LZnCl2+I/R group), lung I/R + high-dose ZnCl2 group (HZnCl2+I/R group), lung I/R + medium-dose ZnCl2 group (MZnCl2+I/R group) and TPEN+MZnCl2+I/R group (n = 8 in each group). Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure the concentration of zinc ions in lung tissue. The degree of lung tissue injury was analyzed by observing HE staining, alveolar damage index, lung wet/dry weight ratio and lung tissue gross changes. TUNEL staining was used to detect cellular apoptosis in lung tissue. Western blot and RT-qPCR were used to determine the protein expression levels of caspase-3 and ZIP8, as well as the mRNA expression levels of zinc transporters (ZIP, ZNT) in lung tissue. The mitochondrial membrane potential (MMP) of lung tissue was detected by JC-1 MMP detection kit. The results showed that, compared with the control group, the lung tissue damage, lung wet/dry weight ratio and alveolar damage index were significantly increased in the I/R group. And in the lung tissue, the concentration of Zn2+ was markedly decreased, while the cleaved caspase-3/caspase-3 ratio and apoptotic levels were significantly increased. The expression levels of ZIP8 mRNA and protein were down-regulated significantly, while the mRNA expression of other zinc transporters remained unchanged. There was also a significant decrease in MMP. Compared with the I/R group, both MZnCl2+I/R group and HZnCl2+I/R group exhibited significantly reduced lung tissue injury, lung wet/dry weight ratio and alveolar damage index, increased Zn2+ concentration, decreased ratio of cleaved caspase-3/caspase-3 and apoptosis, and up-regulated expression levels of ZIP8 mRNA and protein. In addition, the MMP was significantly increased in the lung tissue. Zn2+ chelating agent TPEN reversed the above-mentioned protective effects of medium-dose ZnCl2 on the lung tissue in the I/R group. The aforementioned results suggest that exogenous administration of ZnCl2 can improve lung I/R injury in rats.
Animals
;
Reperfusion Injury/pathology*
;
Male
;
Rats, Sprague-Dawley
;
Rats
;
Chlorides/administration & dosage*
;
Lung/pathology*
;
Zinc Compounds/administration & dosage*
;
Apoptosis/drug effects*
;
Caspase 3/metabolism*
;
Cation Transport Proteins/metabolism*
3.Biological characteristics of pathogen causing damping off on Aconitum kusnezoffiii and inhibitory effect of effective fungicides.
Si-Yi GUO ; Si-Yao ZHOU ; Tie-Lin WANG ; Ji-Peng CHEN ; Zi-Bo LI ; Ru-Jun ZHOU
China Journal of Chinese Materia Medica 2025;50(7):1727-1734
Aconitum kusnezoffii is a perennial herbaceous medicinal plant of the family Ranunculaceae, with unique medicinal value. Damping off is one of the most important seedling diseases affecting A. kusnezoffii, occurring widely and often causing large-scale seedling death in the field. To clarify the species of the pathogen causing damping off in A. kusnezoffii and to formulate an effective control strategy, this study conducted pathogen identification, research on biological characteristics, and evaluation of fungicide inhibitory activity. Through morphological characteristics, cultural traits, and phylogenetic tree analysis, the pathogen causing damping off in A. kusnezoffii was identified as Rhizoctonia solani, belonging to the AG5 anastomosis group. The optimal temperature for mycelial growth of the pathogen was 25-30 ℃, with OA medium as the most suitable medium, pH 8 as the optimal pH, and sucrose and yeast as the best carbon and nitrogen sources, respectively. The effect of light on mycelial growth was not significant. In evaluating the inhibitory activity of 45 chemical fungicides, including 30% hymexazol, and 4 biogenic fungicides, including 0.3% eugenol, it was found that 30% thifluzamide and 50% fludioxonil had significantly better inhibitory effects on R. solani than other tested agents, with EC_(50) values of 0.129 6,0.220 6 μg·mL~(-1), respectively. Among the biogenic fungicides, 0.3% eugenol also showed an ideal inhibitory effect on the pathogen, with an EC_(50) of 1.668 9 μg·mL~(-1). To prevent the development of resistance in the pathogen and to reduce the use of chemical fungicides, it is recommended that the three fungicides above be used in rotation during production. These findings provide a theoretical basis for the accurate diagnosis and effective control strategy for R. solani causing damping off in A. kusnezoffii.
Fungicides, Industrial/pharmacology*
;
Plant Diseases/microbiology*
;
Rhizoctonia/growth & development*
;
Aconitum/microbiology*
;
Phylogeny
;
Mycelium/growth & development*
4.Differences in intestinal absorption characteristics of Rubus multibracteatus extract in normal and inflammatory pain model rats by in-vitro everted intestine sac method.
Ming-Li BAO ; Qing ZHANG ; Yang JIN ; Yi CHEN ; Jian-Qing PENG ; Si-Ying CHEN ; Zhi-Jie MA ; Jian LIAO ; Jing HUANG ; Zi-Peng GONG
China Journal of Chinese Materia Medica 2025;50(16):4690-4704
This study compared the differences in intestinal absorption characteristics of eleven active components in Rubus multibracteatus(RM) extract(protocatechuic acid, tiliroside, scutellarin, luteoloside, astragalin, epicatechin, catechin, xanthotoxin, p-coumaric acid, caffeic acid, and apigenin-7-O-glucuronide) between normal rats and inflammatory pain model rats using the in-vitro everted intestinal sac model. The RM extract was administered at absorption concentrations of 25.0, 50.0, and 100.0 mg·mL~(-1). The contents of the eleven components in intestinal absorption solution samples were quantified by ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS), and their cumulative absorption(Q) and absorption rate constant(K_a) were calculated to evaluate the absorption characteristics of these components in normal rats and inflammatory pain model rats. The results show that except for catechin, epicatechin, and caffeic acid, the cumulative absorption-time curves of the other eight components(protocatechuic acid, tiliroside, scutellarin, luteoloside, astragalin, xanthotoxin, p-coumaric acid, and apigenin-7-O-glucuronide) exhibit an upward trend without saturation, with correlation coefficients(R~2) all > 0.9, indicating linear absorption. However, the overall absorption of all components is not dose-dependent with increasing concentration, suggesting that their absorption mechanisms are not solely passive diffusion. In both normal and model rats, the jejunum shows the highest absorption for all components except xanthotoxin. The overall absorption of seven components(excluding protocatechuic acid, caffeic acid, apigenin-7-O-glucuronide, and luteoloside) in normal rats is better than that in model rats across all intestinal segments. These findings indicate that the pathological state of inflammatory pain alters the intestinal absorption of RM extract, and its mechanism needs further investigation.
Animals
;
Rats
;
Intestinal Absorption/drug effects*
;
Male
;
Rats, Sprague-Dawley
;
Drugs, Chinese Herbal/metabolism*
;
Disease Models, Animal
;
Pain/metabolism*
;
Intestines/drug effects*
;
Intestinal Mucosa/metabolism*
5.Modeling and finite element analysis of human trabecular meshwork outflow pathways.
Shiya BAO ; Qing SUN ; Si CHEN ; Xinyu CHEN ; Xiang PENG ; Jing ZHANG
Journal of Biomedical Engineering 2025;42(3):585-591
Glaucoma is the leading cause of irreversible blindness worldwide, with its primary risk factor arising from elevated intraocular pressure (IOP) due to an imbalance between aqueous humor production and outflow. This study aims to establish quantitative correlations among IOP, iris mechanical properties, channel microstructures, and aqueous humor dynamics through three-dimensional modeling and finite element analysis, overcoming the limitations of conventional experimental techniques in studying aqueous flow within the trabecular meshwork (TM) outflow pathway. A three-dimensional fluid-structure interaction (FSI) model incorporating the layered TM structure, Schlemm's canal (SC), iris, and other anterior segment tissues was developed based on human ocular anatomy. FSI simulations were performed to quantify the effects of IOP variations and iris Young's modulus on tissue morphology and aqueous humor dynamics parameters. The computational results demonstrated that axial iris deformation showed significant correlations with IOP and iris Young's modulus. Although elevated IOP exhibited minimal effects on hydrodynamic parameters in the anterior and posterior chambers, it markedly suppressed aqueous flow velocity in the TM region. Additionally, wall shear stress in SC and collector channels displayed high sensitivity to IOP variations. These findings reveal that the tissue mechanics-FSI mechanism modulates outflow resistance by regulating aqueous humor dynamics, offering valuable references for developing clinical therapies targeting IOP reduction in glaucoma management.
Humans
;
Trabecular Meshwork/anatomy & histology*
;
Finite Element Analysis
;
Aqueous Humor/metabolism*
;
Intraocular Pressure/physiology*
;
Glaucoma/physiopathology*
;
Iris/anatomy & histology*
;
Computer Simulation
;
Models, Biological
6.Protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on a yorkshire model of brain injury after traumatic blood loss.
Xiang-Yu SONG ; Yang-Hui DONG ; Zhi-Bo JIA ; Lei-Jia CHEN ; Meng-Yi CUI ; Yan-Jun GUAN ; Bo-Yao YANG ; Si-Ce WANG ; Sheng-Feng CHEN ; Peng-Kai LI ; Heng CHEN ; Hao-Chen ZUO ; Zhan-Cheng YANG ; Wen-Jing XU ; Ya-Qun ZHAO ; Jiang PENG
Chinese Journal of Traumatology 2025;28(6):469-476
PURPOSE:
To investigate the protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on ischemic hypoxic injury of yorkshire brain tissue caused by traumatic blood loss.
METHODS:
This article performed a random controlled trial. Brain tissue of 7 yorkshire was selected and divided into the sub-low temperature anterograde machine perfusion group (n = 4) and the blank control group (n = 3) using the random number table method. A yorkshire model of brain tissue injury induced by traumatic blood loss was established. Firstly, the perfusion temperature and blood oxygen saturation were monitored in real-time during the perfusion process. The number of red blood cells, hemoglobin content, NA+, K+, and Ca2+ ions concentrations and pH of the perfusate were detected. Following perfusion, we specifically examined the parietal lobe to assess its water content. The prefrontal cortex and hippocampus were then dissected for histological evaluation, allowing us to investigate potential regional differences in tissue injury. The blank control group was sampled directly before perfusion. All statistical analyses and graphs were performed using GraphPad Prism 8.0 Student t-test. All tests were two-sided, and p value of less than 0.05 was considered to indicate statistical significance.
RESULTS:
The contents of red blood cells and hemoglobin during perfusion were maintained at normal levels but more red blood cells were destroyed 3 h after the perfusion. The blood oxygen saturation of the perfusion group was maintained at 95% - 98%. NA+ and K+ concentrations were normal most of the time during perfusion but increased significantly at about 4 h. The Ca2+ concentration remained within the normal range at each period. Glucose levels were slightly higher than the baseline level. The pH of the perfusion solution was slightly lower at the beginning of perfusion, and then gradually increased to the normal level. The water content of brain tissue in the sub-low and docile perfusion group was 78.95% ± 0.39%, which was significantly higher than that in the control group (75.27% ± 0.55%, t = 10.49, p < 0.001), and the difference was statistically significant. Compared with the blank control group, the structure and morphology of pyramidal neurons in the prefrontal cortex and CA1 region of the hippocampal gyrus were similar, and their integrity was better. The structural integrity of granulosa neurons was destroyed and cell edema increased in the perfusion group compared with the blank control group. Immunofluorescence staining for glail fibrillary acidic protein and Iba1, markers of glial cells, revealed well-preserved cell structures in the perfusion group. While there were indications of abnormal cellular activity, the analysis showed no significant difference in axon thickness or integrity compared to the 1-h blank control group.
CONCLUSIONS
Mild hypothermic machine perfusion can improve ischemia and hypoxia injury of yorkshire brain tissue caused by traumatic blood loss and delay the necrosis and apoptosis of yorkshire brain tissue by continuous oxygen supply, maintaining ion homeostasis and reducing tissue metabolism level.
Animals
;
Perfusion/methods*
;
Disease Models, Animal
;
Brain Injuries/etiology*
;
Swine
;
Male
;
Hypothermia, Induced/methods*
7.Predictive efficacy of serum hepcidin, ferritin, and q-Dioxn MRI for upgrading, upstaging, and biochemical recurrence in prostate cancer patients: A comparative study.
Zhen TIAN ; Guang-Zheng LI ; Ren-Peng HUANG ; Si-Yu WANG ; Li-Chen JIN ; Yu-Xin LIN ; Yu-Hua HUANG
National Journal of Andrology 2025;31(9):800-806
OBJECTIVE:
The aim of this study is to explore the correlation among serum hepcidin, ferritin, and q-Dioxn MRI with upgrading, upstaging and biochemical recurrence in prostate cancer (PCa) patients.
METHODS:
A total of 103 PCa patients diagnosed by biopsy were selected for this study. All patients underwent q-Dixon MRI prior to biopsy for T2* value measurement. Then serum hepcidin and ferritin were measured before receiving radical prostatectomy. Pathological grading and staging were conducted both preoperatively and postoperatively. The correlations among hepcidin, ferritin, T2* values, and postoperative upgrading, upstaging, biochemical recurrence were subsequently analyzed.
RESULTS:
The hepcidin level of PCa patients was measured at (123.51 ± 23.03) ng/mL, while the ferritin level was recorded at (239.80 ± 79.59) ng/mL, and the T2* value was (41.07 ± 6.37) ms. A total of 49 and 36 cases were observed with upgrading and upstaging in postoperative pathology, respectively. The median follow-up duration was 28.0 months (6.0-38.0 months), during which biochemical recurrence was observed in 12 cases. For upgrading, hepcidin and ferritin demonstrated the predictive efficacy, with areas under the ROC curve of 0.777 and 0.642, respectively, whereas T2* values did not show sufficient predictive power. For upstaging, hepcidin, ferritin, and T2* exhibited predictive efficacy, with areas under the ROC curve of 0.806, 0.696, and 0.655, respectively. Multivariate Logistic regression analysis indicated that hepcidin served as an independent risk factor for both upgrading (OR 1.055, 95%CI 1.027-1.085, P<0.001) and upstaging (OR 1.094, 95%CI 1.040-1.152, P<0.001). Cox regression analysis showed that hepcidin (95%CI 1.000-1.052, P = 0.049) was a significant risk factor for predicting biochemical recurrence.
CONCLUSION
Hepcidin could serve as a predictor for pathological upgrading, upstaging and biochemical recurrence after radical prostatectomy, which provides a novel potential index for risk stratification and prognostic evaluation of PCa patients.
Humans
;
Male
;
Prostatic Neoplasms/diagnosis*
;
Hepcidins/blood*
;
Ferritins/blood*
;
Middle Aged
;
Magnetic Resonance Imaging/methods*
;
Aged
;
Neoplasm Recurrence, Local
;
Neoplasm Staging
8.Effects of different side tension pneumothorax on hemodynamic in pigs
He-Shan HUANG ; Peng-Fei LIU ; Meng-Jie DOU ; Si-Yu CHEN ; Fa-Qin LYU ; Wei CHEN
Medical Journal of Chinese People's Liberation Army 2024;49(8):897-904
Objective To explore the effects of different side tension pneumothorax on hemodynamics in pigs,providing data support for the optimization of on-site first-aid procedures for pneumothorax.Methods Twelve Bama pigs were randomly divided into left-sided tension pneumothorax group and right-sided tension pneumothorax group(6 in each group).During the occurrence of pneumothorax and as the pleural pressure gradually increases by 1 mmHg increments,the key indicators were collected using pulse indicator continuous cardiac output(PICCO)technology:hemodynamic indicators[global ejection fraction(GEF),cardiac output(CO),global end-diastolic volume(GEDV),intrathoracic blood volume(ITBV),stroke volume(SV),mean arterial pressure(MAP)],basic vital signs[heart rate(HR),diastolic blood pressure(DBP),systolic blood pressure(SBP)],and arterial blood gas parameters[partial pressure of oxygen(PO2),partial pressure of carbon dioxide(PCO2)].Mediastinal localization was subsequently performed using radiographs.Differences were investigated through comparison between the two groups and within each group before and after the procedure.Results By comparing the hemodynamic changes and X-ray examination results,twelve Bama pigs tension pneumothorax models were successfully constructed.Hemodynamic analysis showed that in left-sided tension pneumothorax model when the pleural pressure reached 8 mmHg,SBP,DBP,MAP,CO,GEF,SV,GEDV and ITBV were significantly lower than those during the occurrence of ipsilateral pneumothorax(P<0.05).In right-sided tension pneumothorax model,when the pleural pressure reached about 3 mmHg,SBP,DBP,MAP,SV,GEDV,and ITBV were significantly lower than those during the occurrence of ipsilateral pneumothorax(P<0.05).Blood gas analysis showed that at 8 mmHg for left-sided and 3 mmHg for right-sided tension pneumothorax,compared with the occurrence of their respective ipsilateral pneumothorax,PO2 was significantly lower(P<0.05)and PCO2 was significantly higher(P<0.05).Conclusions There are different effects on hemodynamics in different side tension pneumothorax.Compared with left tension pneumothorax,right tension pneumothorax can lead to serious consequences under a smaller pleural pressure.Different side tension pneumothorax models can be constructed according to the actual situation when performing pneumothorax related experiments.
9.Construction of risk prediction model for intraoperative stress injury in children with posterior scoliosis
Xiaoyan LIU ; Sisi TENG ; Si CHEN ; Hongmin XU ; Hui PENG
Journal of Clinical Surgery 2024;32(8):878-881
Objective The aim of this study was to investigate the high risk factors of intraoperative stress injury in children with posterior spinal scoliosis and to construct a corresponding risk prediction model.Methods A total of 237 cases of orthopaedic surgery for posterior scoliosis performed in three first-class hospitals in Changsha City from October 2021 to February 2023.The patients were divided into injury group(31 cases)and uninjured group(206 cases)according to whether stress injury occurred.The risk factors were screened by single factor analysis and multiple Logistic regression analysis,and the corresponding risk prediction model was constructed.Results The results of single factor analysis showed that constitutional index,preoperative skin condition,preoperative hypoproteinemia,preoperative anemia,operative time,intraoperative body temperature and intraoperative bleeding were related to the occurrence of vascular crisis.BMI,preoperative skin condition,preoperative hypoproteinemia,operative time and intraoperative bleeding are high risk factors for the occurrence of intraoperative stress injury in children with posterior scoliosis.The area under ROC curve is 0.612,the sensitivity is 89.7%,and the specificity is 91.0%,indicating that this model has good risk prediction ability.Conclusion BMI,preoperative skin condition,preoperative hypoproteinemia,operative time and intraoperative bleeding are high risk factors for the occurrence of intraoperative stress injury in children with posterior scoliosis.
10.Exploring the effects of sirolimus on the growth and development of zebrafish embryo models
Zi-Xin ZHANG ; Tong QIU ; Jiang-Yuan ZHOU ; Xue-Peng ZHANG ; Xue GONG ; Kai-Ying YANG ; Yu-Ru LAN ; Si-Yuan CHEN ; Yi JI
Chinese Pharmacological Bulletin 2024;40(12):2368-2374
Aim To explore the effects of sirolimus on the growth and development of motor,vascular,nerv-ous,and immune systems through zebrafish models.Methods After 3 hours of fertilization of zebrafish embryos,different concentrations of sirolimus were add-ed to the growth environment,and the growth and de-velopment of the embryos was recorded.Transgenic ze-brafish models labeled with blood vessels,nerves or im-mune cells were used to compare the drug effects on the growth and development of those systems.Results At the concentration of 0.5 μmol·L-1,the hatching rate and the body length(P<0.01)were significantly smaller than those of the control group,and movement was also significantly slowed down.Meanwhile,the length of axons of the nervous system,the development of intersegmental vessels,and the growth of immune cells were significantly delayed by drug treatment.But when the concentration was below 0.1 μmol·L-1,there was no statistically difference between the control group and the sirolimus group.Conclusions When the concentration of sirolimus exceeds a certain level,it can significantly slow down the growth and development of movement,blood vessels,nervous system and im-mune system of zebrafish.Therefore,in clinical prac-tice,it is important to monitor the blood concentration of sirolimus in children on time.

Result Analysis
Print
Save
E-mail