1.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
2.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
3.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
4.Network Pharmacology and Experimental Verification Unraveled The Mechanism of Pachymic Acid in The Treatment of Neuroblastoma
Hang LIU ; Yu-Xin ZHU ; Si-Lin GUO ; Xin-Yun PAN ; Yuan-Jie XIE ; Si-Cong LIAO ; Xin-Wen DAI ; Ping SHEN ; Yu-Bo XIAO
Progress in Biochemistry and Biophysics 2025;52(9):2376-2392
ObjectiveTraditional Chinese medicine (TCM) constitutes a valuable cultural heritage and an important source of antitumor compounds. Poria (Poria cocos (Schw.) Wolf), the dried sclerotium of a polyporaceae fungus, was first documented in Shennong’s Classic of Materia Medica and has been used therapeutically and dietarily in China for millennia. Traditionally recognized for its diuretic, spleen-tonifying, and sedative properties, modern pharmacological studies confirm that Poria exhibits antioxidant, anti-inflammatory, antibacterial, and antitumor activities. Pachymic acid (PA; a triterpenoid with the chemical structure 3β-acetyloxy-16α-hydroxy-lanosta-8,24(31)-dien-21-oic acid), isolated from Poria, is a principal bioactive constituent. Emerging evidence indicates PA exerts antitumor effects through multiple mechanisms, though these remain incompletely characterized. Neuroblastoma (NB), a highly malignant pediatric extracranial solid tumor accounting for 15% of childhood cancer deaths, urgently requires safer therapeutics due to the limitations of current treatments. Although PA shows multi-mechanistic antitumor potential, its efficacy against NB remains uncharacterized. This study systematically investigated the potential molecular targets and mechanisms underlying the anti-NB effects of PA by integrating network pharmacology-based target prediction with experimental validation of multi-target interactions through molecular docking, dynamic simulations, and in vitro assays, aimed to establish a novel perspective on PA’s antitumor activity and explore its potential clinical implications for NB treatment by integrating computational predictions with biological assays. MethodsThis study employed network pharmacology to identify potential targets of PA in NB, followed by validation using molecular docking, molecular dynamics (MD) simulations, MM/PBSA free energy analysis, RT-qPCR and Western blot experiments. Network pharmacology analysis included target screening via TCMSP, GeneCards, DisGeNET, SwissTargetPrediction, SuperPred, and PharmMapper. Subsequently, potential targets were predicted by intersecting the results from these databases via Venn analysis. Following target prediction, topological analysis was performed to identify key targets using Cytoscape software. Molecular docking was conducted using AutoDock Vina, with the binding pocket defined based on crystal structures. MD simulations were performed for 100 ns using GROMACS, and RMSD, RMSF, SASA, and hydrogen bonding dynamics were analyzed. MM/PBSA calculations were carried out to estimate the binding free energy of each protein-ligand complex. In vitro validation included RT-qPCR and Western blot, with GAPDH used as an internal control. ResultsThe CCK-8 assay demonstrated a concentration-dependent inhibitory effect of PA on NB cell viability. GO analysis suggested that the anti-NB activity of PA might involve cellular response to chemical stress, vesicle lumen, and protein tyrosine kinase activity. KEGG pathway enrichment analysis suggested that the anti-NB activity of PA might involve the PI3K/AKT, MAPK, and Ras signaling pathways. Molecular docking and MD simulations revealed stable binding interactions between PA and the core target proteins AKT1, EGFR, SRC, and HSP90AA1. RT-qPCR and Western blot analyses further confirmed that PA treatment significantly decreased the mRNA and protein expression of AKT1, EGFR, and SRC while increasing the HSP90AA1 mRNA and protein levels. ConclusionIt was suggested that PA may exert its anti-NB effects by inhibiting AKT1, EGFR, and SRC expression, potentially modulating the PI3K/AKT signaling pathway. These findings provide crucial evidence supporting PA’s development as a therapeutic candidate for NB.
5.Advances in the role of protein post-translational modifications in circadian rhythm regulation.
Zi-Di ZHAO ; Qi-Miao HU ; Zi-Yi YANG ; Peng-Cheng SUN ; Bo-Wen JING ; Rong-Xi MAN ; Yuan XU ; Ru-Yu YAN ; Si-Yao QU ; Jian-Fei PEI
Acta Physiologica Sinica 2025;77(4):605-626
The circadian clock plays a critical role in regulating various physiological processes, including gene expression, metabolic regulation, immune response, and the sleep-wake cycle in living organisms. Post-translational modifications (PTMs) are crucial regulatory mechanisms to maintain the precise oscillation of the circadian clock. By modulating the stability, activity, cell localization and protein-protein interactions of core clock proteins, PTMs enable these proteins to respond dynamically to environmental and intracellular changes, thereby sustaining the periodic oscillations of the circadian clock. Different types of PTMs exert their effects through distincting molecular mechanisms, collectively ensuring the proper function of the circadian system. This review systematically summarized several major types of PTMs, including phosphorylation, acetylation, ubiquitination, SUMOylation and oxidative modification, and overviewed their roles in regulating the core clock proteins and the associated pathways, with the goals of providing a theoretical foundation for the deeper understanding of clock mechanisms and the treatment of diseases associated with circadian disruption.
Protein Processing, Post-Translational/physiology*
;
Circadian Rhythm/physiology*
;
Humans
;
Animals
;
CLOCK Proteins/physiology*
;
Circadian Clocks/physiology*
;
Phosphorylation
;
Acetylation
;
Ubiquitination
;
Sumoylation
7.A new iridoid from Eucommia ulmoides
Shi-qi ZHOU ; Zhi-you HAO ; Meng YANG ; Chao-yuan XIAO ; Jun-yang ZHANG ; Bo-wen ZHANG ; Si-qi TAO ; Xiao-ke ZHENG ; Wei-sheng FENG
Acta Pharmaceutica Sinica 2024;59(7):2062-2068
Eleven compounds were isolated from
8.Association of complement C3 with urine protein level and proteinuria remission status in patients with primary membranous nephropathy
Si CHEN ; Ying PAN ; Yifei LU ; Li QIAN ; Qing LI ; Yili XU ; Suyan DUAN ; Lin WU ; Bo ZHANG ; Changying XING ; Huijuan MAO ; Yanggang YUAN
Chinese Journal of Nephrology 2024;40(9):705-715
Objective:To investigate the correlation between complement C3 and urine protein level and proteinuria remission status in patients with primary membranous nephropathy (PMN), and better guide individualized clinical treatment.Methods:It was a single-center retrospective study. The clinical data of PMN patients who underwent renal biopsy in the First Affiliated Hospital of Nanjing Medical University from January 2017 to June 2022 were collected. Patients with 24 h urinary protein ≥ 3.5 g were followed up after receiving standard treatment, and the last outpatient or inpatient review was used as the end point of follow-up. 24 h urine protein was collected to evaluate the remission status of proteinuria. Kaplan-Meier method was used to analyze the correlation between serum and renal complements and proteinuria remission. Cox regression analysis method was used to analyze the correlation between serum C3 level and renal tissue C3 deposition and proteinuria remission.Results:This study included 507 PMN patients with 312 (61.54%) males, aged 54 (43, 64) years old. Compared with 24 h urinary protein < 3.5 g group, proportion of males ( χ2=22.479, P<0.001), age ( Z=-2.521, P=0.012), systolic blood pressure ( Z=-4.148, P<0.001), diastolic blood pressure ( Z=-4.084, P<0.001), serum anti-phospholipase A2 receptor (PLA2R) antibody titer ( Z=-7.019, P<0.001), total cholesterol ( Z=-8.796, P<0.001), triglyceride ( Z=-6.158, P<0.001), low density lipoprotein cholesterol ( Z=-8.716, P<0.001), serum creatinine ( Z=-7.368, P<0.001), serum C3 ( Z=-3.663, P<0.001), serum C4 ( Z=-6.560, P<0.001), proportion of glucocorticoid use ( χ2=116.417, P<0.001) and proportion of immunosuppressant use ( χ2=53.839, P<0.001) were all higher, while serum albumin ( Z=12.518, P<0.001), estimated glomerular filtration rate ( Z=6.345, P<0.001) and serum IgG ( Z=7.321, P<0.001) were all lower in 24 h urinary protein ≥3.5 g group. There were 268 patients included in the follow-up cohort with baseline 24 h urinary protein of 7.15 (5.14, 10.24) g, serum anti-PLA2R antibody titer of 61.44 (14.35, 193.24) RU/ml, serum C3 of 1.005 (0.864, 1.150) g/L, and serum C4 of 0.260 (0.214, 0.317) g/L. Kaplan-Meier survival curve showed that the incomplete remission rate of proteinuria in serum C3 > 1.005 g/L group was lower than that in serum C3 ≤ 1.005 g/L group (log-rank χ2=4.757, P=0.029). There was no significant difference in the incomplete remission rate of proteinuria between serum C4 ≤ 0.260 g/L group and serum C4 > 0.260 g/L group (log-rank χ2=3.543, P=0.060). Renal C1q (log-rank χ2=0.167, P=0.683) and C4 (log-rank χ2=1.927, P=0.165) deposition had no significant effects on proteinuria remission in PMN patients. The incomplete remission rate of proteinuria in patients with renal C3 deposition was higher than that in patients without renal C3 deposition (log-rank χ2=7.018, P=0.008). Univariate Cox regression analysis showed that serum C3 level and C3 deposition in renal tissues were influencing factors of incomplete remission of proteinuria (both P<0.05), while adjusting for gender, age, mean arterial pressure, serum anti-PLA2R antibody, serum albumin and 24 h urinary protein, serum C3 ≤ 1.005 g/L ( HR=1.374, 95% CI 1.021-1.849, P=0.036), C3 deposition in renal tissues ( HR=1.949, 95% CI 1.098-3.460, P=0.023), and serum C3 ≤ 1.005 g/L combined with C3 deposition in renal tissues ( HR=1.472, 95% CI 1.093-1.983, P=0.011) were independent influencing factors of incomplete remission of proteinuria. Conclusions:The serum C3 level and C3 deposition in renal tissues are closely related to urinary protein level and proteinuria remission status in PMN patients. The patients with higher urinary protein have higher serum C3. For patients with massive proteinuria, serum C3 ≤ 1.005 g/L, C3 deposition in renal tissues, serum C3 ≤ 1.005 g/L combined with C3 deposition in renal tissues are independent risk factors of incomplete remission of proteinuria.
9.Effects of Compound Danshen Dripping Pills on Ventricular Remodeling and Cardiac Function after Acute Anterior Wall ST-Segment Elevation Myocardial Infarction (CODE-AAMI): Protocol for a Randomized Placebo-Controlled Trial.
Yu-Jie WU ; Bo DENG ; Si-Bo WANG ; Rui QIAO ; Xi-Wen ZHANG ; Yuan LU ; Li WANG ; Shun-Zhong GU ; Yu-Qing ZHANG ; Kai-Qiao LI ; Zong-Liang YU ; Li-Xing WU ; Sheng-Biao ZHAO ; Shuang-Lin ZHOU ; Yang YANG ; Lian-Sheng WANG
Chinese journal of integrative medicine 2023;29(12):1059-1065
BACKGROUND:
Ventricular remodeling after acute anterior wall ST-segment elevation myocardial infarction (AAMI) is an important factor in occurrence of heart failure which additionally results in poor prognosis. Therefore, the treatment of ventricular remodeling needs to be further optimized. Compound Danshen Dripping Pills (CDDP), a traditional Chinese medicine, exerts a protective effect on microcirculatory disturbance caused by ischemia-reperfusion injury and attenuates ventricular remodeling after myocardial infarction.
OBJECTIVE:
This study is designed to evaluate the efficacy and safety of CDDP in improving ventricular remodeling and cardiac function after AAMI on a larger scale.
METHODS:
This study is a multi-center, randomized, double-blind, placebo-controlled, parallel-group clinical trial. The total of 268 patients with AAMI after primary percutaneous coronary intervention (pPCI) will be randomly assigned 1:1 to the CDDP group (n=134) and control group (n=134) with a follow-up of 48 weeks. Both groups will be treated with standard therapy of ST-segment elevation myocardial infarction (STEMI), with the CDDP group administrating 20 tablets of CDDP before pPCI and 10 tablets 3 times daily after pPCI, and the control group treated with a placebo simultaneously. The primary endpoint is 48-week echocardiographic outcomes including left ventricular ejection fraction (LVEF), left ventricular end-diastolic volume index (LVEDVI), and left ventricular end-systolic volume index (LVESVI). The secondary endpoint includes the change in N terminal pro-B-type natriuretic peptide (NT-proBNP) level, arrhythmias, and cardiovascular events (death, cardiac arrest, or cardiopulmonary resuscitation, rehospitalization due to heart failure or angina pectoris, deterioration of cardiac function, and stroke). Investigators and patients are both blinded to the allocated treatment.
DISCUSSION
This prospective study will investigate the efficacy and safety of CDDP in improving ventricular remodeling and cardiac function in patients undergoing pPCI for a first AAMI. Patients in the CDDP group will be compared with those in the control group. If certified to be effective, CDDP treatment in AAMI will probably be advised on a larger scale. (Trial registration No. NCT05000411).
Humans
;
ST Elevation Myocardial Infarction/therapy*
;
Stroke Volume
;
Ventricular Remodeling
;
Prospective Studies
;
Microcirculation
;
Ventricular Function, Left
;
Myocardial Infarction/etiology*
;
Treatment Outcome
;
Percutaneous Coronary Intervention/adverse effects*
;
Heart Failure/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Randomized Controlled Trials as Topic
;
Multicenter Studies as Topic
10.Safety of butylphthalide and edaravone in patients with ischemic stroke: a multicenter real-world study.
Shu-Xian LYU ; Dong-Fang QIAN ; Yu-Fei FENG ; Cheng-Wu SHEN ; Lu-Bo GUO ; Jian-Tao LYU ; Peng-Fei JIN ; Ting LI ; Si-Yuan TAN ; Zi-Xuan ZHANG ; Lin HUANG ; Xue ZHONG ; Le-Qun SU ; Xin HU ; Xin HUANG ; Xue-Yan CUI
Journal of Geriatric Cardiology 2023;20(4):293-308
BACKGROUND:
Butylphthalide (NBP) and edaravone (EDV) injection are common acute ischemic stroke medications in China, but there is a lack of large real-world safety studies on them. This study aimed to determine the incidence of adverse events, detect relevant safety signals, and assess the risk factors associated with these medications in real-world populations.
METHODS:
In this study, data of acute ischemic stroke patients were extracted from the electronic medical record database of six tertiary hospitals between January 2019 and August 2021. Baseline confounders were eliminated using propensity score matching. The drugs' safety was estimated by comparing the results of 24 laboratory tests standards on liver function, kidney function, lipid level, and coagulation function. The drugs' relative risk was estimated by logistic regression. A third group with patients who did not receive NBP or EDV was constructed as a reference. Prescription sequence symmetry analysis was used to evaluate the associations between adverse events and NBP and EDV, respectively.
RESULTS:
81,292 patients were included in this study. After propensity score matching, the NBP, EDV, and third groups with 727 patients in each group. Among the 15 test items, the incidence of adverse events was lower in the NBP group than in the EDV group, and the differences were statistically significant. The multivariate logistic regression equation revealed that NBP injection was not a promoting factor for abnormal laboratory test results, whereas EDV had statistically significant effects on aspartate transaminase, low-density lipoprotein cholesterol and total cholesterol. Prescription sequence symmetry analysis showed that NBP had a weak correlation with abnormal platelet count. EDV had a positive signal associated with abnormal results in gamma-glutamyl transferase, alanine aminotransferase, aspartate aminotransferase, prothrombin time, and platelet count.
CONCLUSIONS
In a large real-world population, NBP has a lower incidence of adverse events and a better safety profile than EDV or other usual medications.

Result Analysis
Print
Save
E-mail