1.Efficacy of balloon stent or oral estrogen for adhesion prevention in septate uterus: A randomized clinical trial.
Shan DENG ; Zichen ZHAO ; Limin FENG ; Xiaowu HUANG ; Sumin WANG ; Xiang XUE ; Lei YAN ; Baorong MA ; Lijuan HAO ; Xueying LI ; Lihua YANG ; Mingyu SI ; Heping ZHANG ; Zi-Jiang CHEN ; Lan ZHU
Chinese Medical Journal 2025;138(8):985-987
2.Identification of novel pathogenic variants in genes related to pancreatic β cell function: A multi-center study in Chinese with young-onset diabetes.
Fan YU ; Yinfang TU ; Yanfang ZHANG ; Tianwei GU ; Haoyong YU ; Xiangyu MENG ; Si CHEN ; Fengjing LIU ; Ke HUANG ; Tianhao BA ; Siqian GONG ; Danfeng PENG ; Dandan YAN ; Xiangnan FANG ; Tongyu WANG ; Yang HUA ; Xianghui CHEN ; Hongli CHEN ; Jie XU ; Rong ZHANG ; Linong JI ; Yan BI ; Xueyao HAN ; Hong ZHANG ; Cheng HU
Chinese Medical Journal 2025;138(9):1129-1131
3.Research progress on calcium activities in astrocyte microdomains.
Fu-Sheng DING ; Si-Si YANG ; Liang ZHENG ; Dan MU ; Zhu HUANG ; Jian-Xiong ZHANG
Acta Physiologica Sinica 2025;77(3):534-544
Astrocytes are a crucial type of glial cells in the central nervous system, not only maintaining brain homeostasis, but also actively participating in the transmission of information within the brain. Astrocytes have a complex structure that includes the soma, various levels of processes, and end-feet. With the advancement of genetically encoded calcium indicators and imaging technologies, researchers have discovered numerous localized and small calcium activities in the fine processes and end-feet. These calcium activities were termed as microdomain calcium activities, which significantly differ from the calcium activities in the soma and can influence the activity of local neurons, synapses, and blood vessels. This article elaborates the detection and analysis, characteristics, sources, and functions of microdomain calcium activities, and discusses the impact of aging and neurodegenerative diseases on these activities, aiming to enhance the understanding of the role of astrocytes in the brain and to provide new insights for the treatment of brain disorders.
Astrocytes/cytology*
;
Humans
;
Animals
;
Calcium/metabolism*
;
Calcium Signaling/physiology*
;
Brain/physiology*
;
Aging/physiology*
;
Membrane Microdomains/physiology*
;
Neurodegenerative Diseases/physiopathology*
4.Antidepressant mechanism of Baihe Dihuang Decoction based on metabolomics and network pharmacology.
Chao HU ; Hui YANG ; Hong-Qing ZHAO ; Si-Qi HUANG ; Hong-Yu LIU ; Shui-Han ZHANG ; Lin TANG
China Journal of Chinese Materia Medica 2025;50(1):10-20
The Baihe Dihuang Decoction(BDD) is a representative traditional Chinese medicine formula that has been used to treat depression. This study employed metabolomics and network pharmacology to investigate the mechanism of BDD in the treatment of depression. Fifty male Sprague-Dawley(SD) rats were randomly assigned to the normal control group, model group, fluoxetine group, and high-and low-dose BDD groups. A rat model of depression was established through chronic unpredictable mild stress(CUMS), and the behavioral changes were detected by forced swimming test and open field test. Metabolomics technology was used to analyze the metabolic profiles of serum and hippocampal tissue to screen differential metabolites and related metabolic pathways. Additionally, network pharmacology and molecular docking techniques were used to investigate the key targets and core active ingredients of BDD in improving metabolic abnormalities of depression. A "component-target-metabolite-pathway" regulatory network was constructed. BDD could significantly improve depressive-like behavior in CUMS rats and regulate 12 differential metabolites in serum and 27 differential metabolites in the hippocampus, involving tryptophan metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis, alanine, aspartate, and glutamate metabolism, tyrosine metabolism, and purine metabolism. Verbascoside, isorbascoside, and regaloside B were the key active ingredients for improving metabolic abnormalities in depression. Epidermal growth factor receptor(EGFR), protooncogene tyrosine-protein kinase(SRC), glycogen synthase kinase 3β(GSK3β), and androgen receptor(AR) were the key core targets for improving metabolic abnormalities of depression. This study offered a preliminary insight into the mechanism of BDD in alleviating metabolic abnormalities of depression through network regulation, providing valuable guidance for its clinical use and subsequent research.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Rats, Sprague-Dawley
;
Rats
;
Metabolomics
;
Depression/genetics*
;
Antidepressive Agents/chemistry*
;
Network Pharmacology
;
Hippocampus/drug effects*
;
Humans
;
Molecular Docking Simulation
;
Behavior, Animal/drug effects*
;
Disease Models, Animal
5.Differences in intestinal absorption characteristics of Rubus multibracteatus extract in normal and inflammatory pain model rats by in-vitro everted intestine sac method.
Ming-Li BAO ; Qing ZHANG ; Yang JIN ; Yi CHEN ; Jian-Qing PENG ; Si-Ying CHEN ; Zhi-Jie MA ; Jian LIAO ; Jing HUANG ; Zi-Peng GONG
China Journal of Chinese Materia Medica 2025;50(16):4690-4704
This study compared the differences in intestinal absorption characteristics of eleven active components in Rubus multibracteatus(RM) extract(protocatechuic acid, tiliroside, scutellarin, luteoloside, astragalin, epicatechin, catechin, xanthotoxin, p-coumaric acid, caffeic acid, and apigenin-7-O-glucuronide) between normal rats and inflammatory pain model rats using the in-vitro everted intestinal sac model. The RM extract was administered at absorption concentrations of 25.0, 50.0, and 100.0 mg·mL~(-1). The contents of the eleven components in intestinal absorption solution samples were quantified by ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS), and their cumulative absorption(Q) and absorption rate constant(K_a) were calculated to evaluate the absorption characteristics of these components in normal rats and inflammatory pain model rats. The results show that except for catechin, epicatechin, and caffeic acid, the cumulative absorption-time curves of the other eight components(protocatechuic acid, tiliroside, scutellarin, luteoloside, astragalin, xanthotoxin, p-coumaric acid, and apigenin-7-O-glucuronide) exhibit an upward trend without saturation, with correlation coefficients(R~2) all > 0.9, indicating linear absorption. However, the overall absorption of all components is not dose-dependent with increasing concentration, suggesting that their absorption mechanisms are not solely passive diffusion. In both normal and model rats, the jejunum shows the highest absorption for all components except xanthotoxin. The overall absorption of seven components(excluding protocatechuic acid, caffeic acid, apigenin-7-O-glucuronide, and luteoloside) in normal rats is better than that in model rats across all intestinal segments. These findings indicate that the pathological state of inflammatory pain alters the intestinal absorption of RM extract, and its mechanism needs further investigation.
Animals
;
Rats
;
Intestinal Absorption/drug effects*
;
Male
;
Rats, Sprague-Dawley
;
Drugs, Chinese Herbal/metabolism*
;
Disease Models, Animal
;
Pain/metabolism*
;
Intestines/drug effects*
;
Intestinal Mucosa/metabolism*
6.Memory Reconsolidation Updating in Substance Addiction: Applications, Mechanisms, and Future Prospects for Clinical Therapeutics.
Shihao HUANG ; Xiaoxing LIU ; Zhonghao LI ; Yue SI ; Liping YANG ; Jiahui DENG ; Yixiao LUO ; Yan-Xue XUE ; Lin LU
Neuroscience Bulletin 2025;41(2):289-304
Persistent and maladaptive drug-related memories represent a key component in drug addiction. Converging evidence from both preclinical and clinical studies has demonstrated the potential efficacy of the memory reconsolidation updating procedure (MRUP), a non-pharmacological strategy intertwining two distinct memory processes: reconsolidation and extinction-alternatively termed "the memory retrieval-extinction procedure". This procedure presents a promising approach to attenuate, if not erase, entrenched drug memories and prevent relapse. The present review delineates the applications, molecular underpinnings, and operational boundaries of MRUP in the context of various forms of substance dependence. Furthermore, we critically examine the methodological limitations of MRUP, postulating potential refinement to optimize its therapeutic efficacy. In addition, we also look at the potential integration of MRUP and neurostimulation treatments in the domain of substance addiction. Overall, existing studies underscore the significant potential of MRUP, suggesting that interventions predicated on it could herald a promising avenue to enhance clinical outcomes in substance addiction therapy.
Humans
;
Substance-Related Disorders/psychology*
;
Memory Consolidation/physiology*
;
Animals
;
Extinction, Psychological/physiology*
7.Cortical Control of Itch Sensation by Vasoactive Intestinal Polypeptide-Expressing Interneurons in the Anterior Cingulate Cortex.
Yiwen ZHANG ; Jiaqi LI ; You WU ; Jialin SI ; Yuanyuan ZHU ; Meng NIAN ; Chen CHEN ; Ningcan MA ; Xiaolin ZHANG ; Yaoyuan ZHANG ; Yiting LIN ; Ling LIU ; Yang BAI ; Shengxi WU ; Jing HUANG
Neuroscience Bulletin 2025;41(12):2184-2200
The anterior cingulate cortex (ACC) has recently been proposed as a key player in the representation of itch stimuli. However, to date, little is known about the contribution of specific ACC interneuron populations to itch processing. Using c-Fos immunolabeling and in vivo Ca2+ imaging, we reported that both histamine and chloroquine stimuli-induced acute itch caused a marked enhancement of vasoactive intestinal peptide (VIP)-expressing interneuron activity in the ACC. Behavioral data indicated that optogenetic and chemogenetic activation of these neurons reduced scratching responses related to histaminergic and non-histaminergic acute itch. Similar neural activity and modulatory role of these neurons were seen in mice with chronic itch induced by contact dermatitis. Together, this study highlights the importance of ACC VIP+ neurons in modulating itch-related affect and behavior, which may help us to develop novel mechanism-based strategies to treat refractory chronic itch in the clinic.
Animals
;
Pruritus/physiopathology*
;
Vasoactive Intestinal Peptide/metabolism*
;
Interneurons/metabolism*
;
Gyrus Cinguli/metabolism*
;
Mice
;
Male
;
Mice, Inbred C57BL
;
Histamine
;
Chloroquine
;
Optogenetics
;
Mice, Transgenic
8.Expert consensus on early orthodontic treatment of class III malocclusion.
Xin ZHOU ; Si CHEN ; Chenchen ZHOU ; Zuolin JIN ; Hong HE ; Yuxing BAI ; Weiran LI ; Jun WANG ; Min HU ; Yang CAO ; Yuehua LIU ; Bin YAN ; Jiejun SHI ; Jie GUO ; Zhihua LI ; Wensheng MA ; Yi LIU ; Huang LI ; Yanqin LU ; Liling REN ; Rui ZOU ; Linyu XU ; Jiangtian HU ; Xiuping WU ; Shuxia CUI ; Lulu XU ; Xudong WANG ; Songsong ZHU ; Li HU ; Qingming TANG ; Jinlin SONG ; Bing FANG ; Lili CHEN
International Journal of Oral Science 2025;17(1):20-20
The prevalence of Class III malocclusion varies among different countries and regions. The populations from Southeast Asian countries (Chinese and Malaysian) showed the highest prevalence rate of 15.8%, which can seriously affect oral function, facial appearance, and mental health. As anterior crossbite tends to worsen with growth, early orthodontic treatment can harness growth potential to normalize maxillofacial development or reduce skeletal malformation severity, thereby reducing the difficulty and shortening the treatment cycle of later-stage treatment. This is beneficial for the physical and mental growth of children. Therefore, early orthodontic treatment for Class III malocclusion is particularly important. Determining the optimal timing for early orthodontic treatment requires a comprehensive assessment of clinical manifestations, dental age, and skeletal age, and can lead to better results with less effort. Currently, standardized treatment guidelines for early orthodontic treatment of Class III malocclusion are lacking. This review provides a comprehensive summary of the etiology, clinical manifestations, classification, and early orthodontic techniques for Class III malocclusion, along with systematic discussions on selecting early treatment plans. The purpose of this expert consensus is to standardize clinical practices and improve the treatment outcomes of Class III malocclusion through early orthodontic treatment.
Humans
;
Malocclusion, Angle Class III/classification*
;
Orthodontics, Corrective/methods*
;
Consensus
;
Child
9.Human ESC-derived vascular cells promote vascular regeneration in a HIF-1α dependent manner.
Jinghui LEI ; Xiaoyu JIANG ; Daoyuan HUANG ; Ying JING ; Shanshan YANG ; Lingling GENG ; Yupeng YAN ; Fangshuo ZHENG ; Fang CHENG ; Weiqi ZHANG ; Juan Carlos Izpisua BELMONTE ; Guang-Hui LIU ; Si WANG ; Jing QU
Protein & Cell 2024;15(1):36-51
Hypoxia-inducible factor (HIF-1α), a core transcription factor responding to changes in cellular oxygen levels, is closely associated with a wide range of physiological and pathological conditions. However, its differential impacts on vascular cell types and molecular programs modulating human vascular homeostasis and regeneration remain largely elusive. Here, we applied CRISPR/Cas9-mediated gene editing of human embryonic stem cells and directed differentiation to generate HIF-1α-deficient human vascular cells including vascular endothelial cells, vascular smooth muscle cells, and mesenchymal stem cells (MSCs), as a platform for discovering cell type-specific hypoxia-induced response mechanisms. Through comparative molecular profiling across cell types under normoxic and hypoxic conditions, we provide insight into the indispensable role of HIF-1α in the promotion of ischemic vascular regeneration. We found human MSCs to be the vascular cell type most susceptible to HIF-1α deficiency, and that transcriptional inactivation of ANKZF1, an effector of HIF-1α, impaired pro-angiogenic processes. Altogether, our findings deepen the understanding of HIF-1α in human angiogenesis and support further explorations of novel therapeutic strategies of vascular regeneration against ischemic damage.
Humans
;
Vascular Endothelial Growth Factor A/metabolism*
;
Endothelial Cells/metabolism*
;
Transcription Factors/metabolism*
;
Gene Expression Regulation
;
Hypoxia/metabolism*
;
Cell Hypoxia/physiology*
10.Research progress of transcranial alternating current stimulation in the treatment of cognitive impairment in neuropsychiatric diseases
Xuelin ZHANG ; Qiuli YANG ; Xiaying SI ; Peishan HUANG ; Ke WANG ; Yi MIAO ; Qiangli DONG
Chinese Journal of Nervous and Mental Diseases 2024;50(1):43-48
Cognitive dysfunction is the impairment of higher brain functions.Cognitive impairment caused by neuropsychiatric diseases has caused serious impact on patients'quality of life and the outcome of the disease.The transcranial alternating current stimulation(tACS)improves cognitive function by modulating neural oscillations of specific frequencies,affecting the release of neurotransmitters such as serotonin and dopamine,and enhancing local and distal synchronization of brain networks.Specific frequencies of tACS can improve the cognitive impairment caused by Alzheimer disease(AD),schizophrenia,and depression,among which the gamma and theta frequencies of tACS have the most significant effects on cognitive function.tACS has high safety and low operational difficulty,and has great potential to improve cognitive function.

Result Analysis
Print
Save
E-mail