1.Reducing Healing Period with DDM/rhBMP-2 Grafting for Early Loading in Dental Implant Surgery
Jeong-Kui KU ; Jung-Hoon LIM ; Jung-Ah LIM ; In-Woong UM ; Yu-Mi KIM ; Pil-Young YUN
Tissue Engineering and Regenerative Medicine 2025;22(2):261-271
Background:
Traditionally, dental implants require a healing period of 4 to 9 months for osseointegration, with longer recovery times considered when bone grafting is needed. This retrospective study evaluates the clinical efficacy of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) during dental implant placement to expedite the osseointegration period for early loading.
Methods:
Thirty patients (17 male, 13 female; mean age 55.0 ± 8.8 years) requiring bone grafts due to implant fixture exposure (more than four threads; ≥ 3.2 mm) were included, with a total of 96 implants placed. Implants were inserted using a two-stage protocol with DDM/rhBMP-2 grafts. Early loading was initiated at two months postoperatively in the mandible and three months in the maxilla. Clinical outcomes evaluated included primary and secondary stability (implant stability quotient values), healing period, bone width, and marginal bone level assessed via cone-beam computed tomography.
Results:
All implants successfully supported final prosthetics with a torque of 50Ncm, without any osseointegration failures. The average healing period was 69.6 days in the mandible and 90.5 days in the maxilla, with significantly higher secondary stability in the mandible (80.7 ± 6.7) compared to the maxilla (73.0 ± 9.2, p < 0.001). Histological analysis confirmed new bone formation and vascularization.
Conclusion
DDM/rhBMP-2 grafting appears to significantly reduce the healing period, enabling early loading with stable and favorable clinical outcomes.
2.Reducing Healing Period with DDM/rhBMP-2 Grafting for Early Loading in Dental Implant Surgery
Jeong-Kui KU ; Jung-Hoon LIM ; Jung-Ah LIM ; In-Woong UM ; Yu-Mi KIM ; Pil-Young YUN
Tissue Engineering and Regenerative Medicine 2025;22(2):261-271
Background:
Traditionally, dental implants require a healing period of 4 to 9 months for osseointegration, with longer recovery times considered when bone grafting is needed. This retrospective study evaluates the clinical efficacy of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) during dental implant placement to expedite the osseointegration period for early loading.
Methods:
Thirty patients (17 male, 13 female; mean age 55.0 ± 8.8 years) requiring bone grafts due to implant fixture exposure (more than four threads; ≥ 3.2 mm) were included, with a total of 96 implants placed. Implants were inserted using a two-stage protocol with DDM/rhBMP-2 grafts. Early loading was initiated at two months postoperatively in the mandible and three months in the maxilla. Clinical outcomes evaluated included primary and secondary stability (implant stability quotient values), healing period, bone width, and marginal bone level assessed via cone-beam computed tomography.
Results:
All implants successfully supported final prosthetics with a torque of 50Ncm, without any osseointegration failures. The average healing period was 69.6 days in the mandible and 90.5 days in the maxilla, with significantly higher secondary stability in the mandible (80.7 ± 6.7) compared to the maxilla (73.0 ± 9.2, p < 0.001). Histological analysis confirmed new bone formation and vascularization.
Conclusion
DDM/rhBMP-2 grafting appears to significantly reduce the healing period, enabling early loading with stable and favorable clinical outcomes.
3.Reducing Healing Period with DDM/rhBMP-2 Grafting for Early Loading in Dental Implant Surgery
Jeong-Kui KU ; Jung-Hoon LIM ; Jung-Ah LIM ; In-Woong UM ; Yu-Mi KIM ; Pil-Young YUN
Tissue Engineering and Regenerative Medicine 2025;22(2):261-271
Background:
Traditionally, dental implants require a healing period of 4 to 9 months for osseointegration, with longer recovery times considered when bone grafting is needed. This retrospective study evaluates the clinical efficacy of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) during dental implant placement to expedite the osseointegration period for early loading.
Methods:
Thirty patients (17 male, 13 female; mean age 55.0 ± 8.8 years) requiring bone grafts due to implant fixture exposure (more than four threads; ≥ 3.2 mm) were included, with a total of 96 implants placed. Implants were inserted using a two-stage protocol with DDM/rhBMP-2 grafts. Early loading was initiated at two months postoperatively in the mandible and three months in the maxilla. Clinical outcomes evaluated included primary and secondary stability (implant stability quotient values), healing period, bone width, and marginal bone level assessed via cone-beam computed tomography.
Results:
All implants successfully supported final prosthetics with a torque of 50Ncm, without any osseointegration failures. The average healing period was 69.6 days in the mandible and 90.5 days in the maxilla, with significantly higher secondary stability in the mandible (80.7 ± 6.7) compared to the maxilla (73.0 ± 9.2, p < 0.001). Histological analysis confirmed new bone formation and vascularization.
Conclusion
DDM/rhBMP-2 grafting appears to significantly reduce the healing period, enabling early loading with stable and favorable clinical outcomes.
4.Reducing Healing Period with DDM/rhBMP-2 Grafting for Early Loading in Dental Implant Surgery
Jeong-Kui KU ; Jung-Hoon LIM ; Jung-Ah LIM ; In-Woong UM ; Yu-Mi KIM ; Pil-Young YUN
Tissue Engineering and Regenerative Medicine 2025;22(2):261-271
Background:
Traditionally, dental implants require a healing period of 4 to 9 months for osseointegration, with longer recovery times considered when bone grafting is needed. This retrospective study evaluates the clinical efficacy of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) during dental implant placement to expedite the osseointegration period for early loading.
Methods:
Thirty patients (17 male, 13 female; mean age 55.0 ± 8.8 years) requiring bone grafts due to implant fixture exposure (more than four threads; ≥ 3.2 mm) were included, with a total of 96 implants placed. Implants were inserted using a two-stage protocol with DDM/rhBMP-2 grafts. Early loading was initiated at two months postoperatively in the mandible and three months in the maxilla. Clinical outcomes evaluated included primary and secondary stability (implant stability quotient values), healing period, bone width, and marginal bone level assessed via cone-beam computed tomography.
Results:
All implants successfully supported final prosthetics with a torque of 50Ncm, without any osseointegration failures. The average healing period was 69.6 days in the mandible and 90.5 days in the maxilla, with significantly higher secondary stability in the mandible (80.7 ± 6.7) compared to the maxilla (73.0 ± 9.2, p < 0.001). Histological analysis confirmed new bone formation and vascularization.
Conclusion
DDM/rhBMP-2 grafting appears to significantly reduce the healing period, enabling early loading with stable and favorable clinical outcomes.
5.Reducing Healing Period with DDM/rhBMP-2 Grafting for Early Loading in Dental Implant Surgery
Jeong-Kui KU ; Jung-Hoon LIM ; Jung-Ah LIM ; In-Woong UM ; Yu-Mi KIM ; Pil-Young YUN
Tissue Engineering and Regenerative Medicine 2025;22(2):261-271
Background:
Traditionally, dental implants require a healing period of 4 to 9 months for osseointegration, with longer recovery times considered when bone grafting is needed. This retrospective study evaluates the clinical efficacy of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) during dental implant placement to expedite the osseointegration period for early loading.
Methods:
Thirty patients (17 male, 13 female; mean age 55.0 ± 8.8 years) requiring bone grafts due to implant fixture exposure (more than four threads; ≥ 3.2 mm) were included, with a total of 96 implants placed. Implants were inserted using a two-stage protocol with DDM/rhBMP-2 grafts. Early loading was initiated at two months postoperatively in the mandible and three months in the maxilla. Clinical outcomes evaluated included primary and secondary stability (implant stability quotient values), healing period, bone width, and marginal bone level assessed via cone-beam computed tomography.
Results:
All implants successfully supported final prosthetics with a torque of 50Ncm, without any osseointegration failures. The average healing period was 69.6 days in the mandible and 90.5 days in the maxilla, with significantly higher secondary stability in the mandible (80.7 ± 6.7) compared to the maxilla (73.0 ± 9.2, p < 0.001). Histological analysis confirmed new bone formation and vascularization.
Conclusion
DDM/rhBMP-2 grafting appears to significantly reduce the healing period, enabling early loading with stable and favorable clinical outcomes.
6.Does intradiscal steroid injection accelerate the histological degeneration of the human disc?
Jin Hwan KIM ; Sunhee CHANG ; Byung Ho KIM ; Gyu Heon LEE ; Sung Tan CHO
Osteoporosis and Sarcopenia 2024;10(3):108-113
Objectives:
Intradiscal steroid injection (ISI) use has been proven as a low-risk and rapid treatment for disc degeneration disease (DDD). However, the histological effects of steroids on human discs remain poorly understood. The purpose of this study is to investigate whether ISI induces histologic degeneration of the disc.
Methods:
In this study, a histological analysis was carried out on the nucleus pulposus obtained from 150 patients who underwent posterior lumbar interbody fusion. Among these individuals, 59 received ISI before the surgery, while 91 did not. After staining with hematoxylin and eosin, the histological classification was performed based on chondrocyte proliferation (C1, C2, and C3) and granular matrix change (M1 and M2). Logistic regression analysis was used to identify the main factors influencing chondrocyte proliferation and granular matrix change.Additionally, histological differences between the ISI group and the non-ISI group were analyzed.
Results:
Chondrocyte proliferation and granular matrix changes were not significantly different between the ISI and non-ISI groups. The logistic regression analysis indicated that age is the most significant risk factor for both chondrocyte proliferation (P = 0.02) and granular matrix changes (P < 0.01).
Conclusions
The most crucial factor in disc degeneration is age. ISI does not accelerate the histological degeneration of chondrocyte proliferation and granular matrix. Therefore, the ISI could be considered as a histologically safe alternative in patients with DDD.
7.Bulk Modification with Inorganic Particles and Immobilization of Extracellular Vesicles onto PDO Composite for Facial Rejuvenation
Seung-Woon BAEK ; Dong Min KIM ; Semi LEE ; Duck Hyun SONG ; Gi-Min PARK ; Chun Gwon PARK ; Dong Keun HAN
Tissue Engineering and Regenerative Medicine 2024;21(2):199-208
BACKGROUND:
The skin, a vital organ protecting against microorganisms and dehydration, undergoes structural decline with aging, leading to visible issues such as wrinkles and sagging. Reduced blood vessels exacerbate vulnerability, hindering optimal cellular function and compromising skin health. Polydioxanone (PDO) biomaterials address aging concerns but produce acidic byproducts, causing inflammation. Inorganic particles and nitric oxide (NO) play crucial roles in inhibiting inflammation and promoting skin regeneration. Stem cell-derived extracellular vesicles (EVs) contribute to intercellular communication, offering the potential to enhance cell functions. The study proposes a method to enhance PDO-based medical devices by incorporating inorganic particles and immobilizing EVs, focusing on facial rejuvenation, anti-inflammatory response, collagen formation, and angiogenesis.METHOD: PDO composites with inorganic particles such as magnesium hydroxide (MH) and zinc oxide (ZO) were prepared and followed by EV immobilization. Comprehensive characterization included biocompatibility, anti-inflammation, collagen formation ability, and angiogenesis ability.
RESULTS:
Bulk-modified PDO composites demonstrated even dispersion of inorganic particles, pH neutralization, and enhanced biocompatibility. EVs immobilized on the composite surface exhibited spherical morphology. Inflammationrelated gene expressions decreased, emphasizing anti-inflammatory effects. Collagen-related gene and protein expressions increased, showcasing collagen formation ability. In addition, angiogenic capabilities were notably improved, indicating potential for skin rejuvenation.
CONCLUSION
The study successfully developed and characterized PDO composites with inorganic particles and EVs, demonstrating promising attributes for medical applications. These composites exhibit biocompatibility, anti-inflammatory properties, collagen formation ability, and angiogenic potential, suggesting their utility in skin rejuvenation and tissue engineering. Further research and clinical validation are essential.
9.Quantitative Analysis and Enantiomeric Separation of Ephedra Alkaloids in Ma Huang Related Products by HPLC-DAD and UPLC-MS/MS
Kyoung-Moon HAN ; Jinwoo HWANG ; Sun Hee LEE ; Boreum PARK ; Hyungil KIM ; Sun Young BAEK
Natural Product Sciences 2022;28(4):168-180
Ephedra is a genus of the Ephedraceae family and is found in temperate regions, such as Central Asia and Europe. Among the various ephedra species, Ma Huang (Ephedra herb) is derived from the aerial parts of Ephedra sinica Stapf, Ephedra equisetina Bunge, and Ephedra intermedia Schrenk & C.A. Mey. Ma Huang contains various ephedra alkaloids, including (-)-ephedrine, (+)-pseudoephedrine, (-)-norephedrine, (+)-norpseudoephedrine, (-)-methylephedrine, and (+)-methylpseudoephedrine, which are found naturally as single enantiomers, although they can be prepared as racemates. Although the use of Ma Huang in foods is prohibited in Korea, products containing Ma Huang can be imported, and so it is necessary to develop a suitable analytical technique for the detection of Ma Huang in foods. Herein, we report the development of analytical methods for the detection of ephedra alkaloids in products containing Ma Huang. Following sample purification by solid phase extraction, quantitative analysis was performed using ultra-performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-MS/MS). Additionally, the enantiomers were successfully separated using HPLC-DAD. We successfully analyzed various food samples, where the ephedra alkaloids were qualitatively and quantitatively determined, and the enantiomers were separated. It is expected that these methods may contribute toward preventing the distribution of illegal products containing Ma Huang.
10.A Combination of Surgical and Chemical Induction in a Rabbit Model for Osteoarthritis of the Knee
Eun Jeong GO ; Seon Ae KIM ; Mi-La CHO ; Kwan Soo LEE ; Asode Ananthram SHETTY ; Seok Jung KIM
Tissue Engineering and Regenerative Medicine 2022;19(6):1377-1388
BACKGROUND:
Appropriate animal models of osteoarthritis (OA) are essential to develop new treatment modalities for OA. A combination of surgical and chemical induction could be appropriate for OA models.
METHODS:
Rabbit knee OA models developed by surgical induction (anterior cruciate ligament transection [ACLT]), chemical induction (monosodium iodoacetate [MIA] injection), and a combination of both were compared to assess compositional and structural destruction of the knee joint. Twenty-one New Zealand white rabbits were randomly divided into 3 groups to induce OA (group 1: ACLT, n = 3; group 2: MIA [3, 6, 9 mg] injection, n = 9; group 3: ACLT + MIA [3, 6, 9 mg] injection, n = 9).
RESULTS:
In all groups, the Modified Mankin score was significantly higher in the osteoarthritis-induced knee than in the control. Modified Mankin scores were compared by category. The ACLT group was observed to score high in cartilage structure. In the MIA group, chondrocytes and matrix staining showed higher scores, and the ACLT+MIA group scored higher in all categories for cartilage structure, chondrocytes, matrix staining, and tidemark integrity. The ACLT + 3 mg MIA showed definite OA characteristics such as cartilage surface destruction and degeneration of cartilage layers, and the ACLT + 6 mg MIA and ACLT + 9 mg MIA showed more prominent OA characteristics such as cartilage surface destruction, matrix disorganization, and osteophyte formation.
CONCLUSION
The combination of MIA injection and ACLT could be an appropriate method for OA induction in rabbit models.

Result Analysis
Print
Save
E-mail