1.Reducing Healing Period with DDM/rhBMP-2 Grafting for Early Loading in Dental Implant Surgery
Jeong-Kui KU ; Jung-Hoon LIM ; Jung-Ah LIM ; In-Woong UM ; Yu-Mi KIM ; Pil-Young YUN
Tissue Engineering and Regenerative Medicine 2025;22(2):261-271
Background:
Traditionally, dental implants require a healing period of 4 to 9 months for osseointegration, with longer recovery times considered when bone grafting is needed. This retrospective study evaluates the clinical efficacy of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) during dental implant placement to expedite the osseointegration period for early loading.
Methods:
Thirty patients (17 male, 13 female; mean age 55.0 ± 8.8 years) requiring bone grafts due to implant fixture exposure (more than four threads; ≥ 3.2 mm) were included, with a total of 96 implants placed. Implants were inserted using a two-stage protocol with DDM/rhBMP-2 grafts. Early loading was initiated at two months postoperatively in the mandible and three months in the maxilla. Clinical outcomes evaluated included primary and secondary stability (implant stability quotient values), healing period, bone width, and marginal bone level assessed via cone-beam computed tomography.
Results:
All implants successfully supported final prosthetics with a torque of 50Ncm, without any osseointegration failures. The average healing period was 69.6 days in the mandible and 90.5 days in the maxilla, with significantly higher secondary stability in the mandible (80.7 ± 6.7) compared to the maxilla (73.0 ± 9.2, p < 0.001). Histological analysis confirmed new bone formation and vascularization.
Conclusion
DDM/rhBMP-2 grafting appears to significantly reduce the healing period, enabling early loading with stable and favorable clinical outcomes.
2.Reducing Healing Period with DDM/rhBMP-2 Grafting for Early Loading in Dental Implant Surgery
Jeong-Kui KU ; Jung-Hoon LIM ; Jung-Ah LIM ; In-Woong UM ; Yu-Mi KIM ; Pil-Young YUN
Tissue Engineering and Regenerative Medicine 2025;22(2):261-271
Background:
Traditionally, dental implants require a healing period of 4 to 9 months for osseointegration, with longer recovery times considered when bone grafting is needed. This retrospective study evaluates the clinical efficacy of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) during dental implant placement to expedite the osseointegration period for early loading.
Methods:
Thirty patients (17 male, 13 female; mean age 55.0 ± 8.8 years) requiring bone grafts due to implant fixture exposure (more than four threads; ≥ 3.2 mm) were included, with a total of 96 implants placed. Implants were inserted using a two-stage protocol with DDM/rhBMP-2 grafts. Early loading was initiated at two months postoperatively in the mandible and three months in the maxilla. Clinical outcomes evaluated included primary and secondary stability (implant stability quotient values), healing period, bone width, and marginal bone level assessed via cone-beam computed tomography.
Results:
All implants successfully supported final prosthetics with a torque of 50Ncm, without any osseointegration failures. The average healing period was 69.6 days in the mandible and 90.5 days in the maxilla, with significantly higher secondary stability in the mandible (80.7 ± 6.7) compared to the maxilla (73.0 ± 9.2, p < 0.001). Histological analysis confirmed new bone formation and vascularization.
Conclusion
DDM/rhBMP-2 grafting appears to significantly reduce the healing period, enabling early loading with stable and favorable clinical outcomes.
3.Reducing Healing Period with DDM/rhBMP-2 Grafting for Early Loading in Dental Implant Surgery
Jeong-Kui KU ; Jung-Hoon LIM ; Jung-Ah LIM ; In-Woong UM ; Yu-Mi KIM ; Pil-Young YUN
Tissue Engineering and Regenerative Medicine 2025;22(2):261-271
Background:
Traditionally, dental implants require a healing period of 4 to 9 months for osseointegration, with longer recovery times considered when bone grafting is needed. This retrospective study evaluates the clinical efficacy of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) during dental implant placement to expedite the osseointegration period for early loading.
Methods:
Thirty patients (17 male, 13 female; mean age 55.0 ± 8.8 years) requiring bone grafts due to implant fixture exposure (more than four threads; ≥ 3.2 mm) were included, with a total of 96 implants placed. Implants were inserted using a two-stage protocol with DDM/rhBMP-2 grafts. Early loading was initiated at two months postoperatively in the mandible and three months in the maxilla. Clinical outcomes evaluated included primary and secondary stability (implant stability quotient values), healing period, bone width, and marginal bone level assessed via cone-beam computed tomography.
Results:
All implants successfully supported final prosthetics with a torque of 50Ncm, without any osseointegration failures. The average healing period was 69.6 days in the mandible and 90.5 days in the maxilla, with significantly higher secondary stability in the mandible (80.7 ± 6.7) compared to the maxilla (73.0 ± 9.2, p < 0.001). Histological analysis confirmed new bone formation and vascularization.
Conclusion
DDM/rhBMP-2 grafting appears to significantly reduce the healing period, enabling early loading with stable and favorable clinical outcomes.
4.Reducing Healing Period with DDM/rhBMP-2 Grafting for Early Loading in Dental Implant Surgery
Jeong-Kui KU ; Jung-Hoon LIM ; Jung-Ah LIM ; In-Woong UM ; Yu-Mi KIM ; Pil-Young YUN
Tissue Engineering and Regenerative Medicine 2025;22(2):261-271
Background:
Traditionally, dental implants require a healing period of 4 to 9 months for osseointegration, with longer recovery times considered when bone grafting is needed. This retrospective study evaluates the clinical efficacy of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) during dental implant placement to expedite the osseointegration period for early loading.
Methods:
Thirty patients (17 male, 13 female; mean age 55.0 ± 8.8 years) requiring bone grafts due to implant fixture exposure (more than four threads; ≥ 3.2 mm) were included, with a total of 96 implants placed. Implants were inserted using a two-stage protocol with DDM/rhBMP-2 grafts. Early loading was initiated at two months postoperatively in the mandible and three months in the maxilla. Clinical outcomes evaluated included primary and secondary stability (implant stability quotient values), healing period, bone width, and marginal bone level assessed via cone-beam computed tomography.
Results:
All implants successfully supported final prosthetics with a torque of 50Ncm, without any osseointegration failures. The average healing period was 69.6 days in the mandible and 90.5 days in the maxilla, with significantly higher secondary stability in the mandible (80.7 ± 6.7) compared to the maxilla (73.0 ± 9.2, p < 0.001). Histological analysis confirmed new bone formation and vascularization.
Conclusion
DDM/rhBMP-2 grafting appears to significantly reduce the healing period, enabling early loading with stable and favorable clinical outcomes.
5.Reducing Healing Period with DDM/rhBMP-2 Grafting for Early Loading in Dental Implant Surgery
Jeong-Kui KU ; Jung-Hoon LIM ; Jung-Ah LIM ; In-Woong UM ; Yu-Mi KIM ; Pil-Young YUN
Tissue Engineering and Regenerative Medicine 2025;22(2):261-271
Background:
Traditionally, dental implants require a healing period of 4 to 9 months for osseointegration, with longer recovery times considered when bone grafting is needed. This retrospective study evaluates the clinical efficacy of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) during dental implant placement to expedite the osseointegration period for early loading.
Methods:
Thirty patients (17 male, 13 female; mean age 55.0 ± 8.8 years) requiring bone grafts due to implant fixture exposure (more than four threads; ≥ 3.2 mm) were included, with a total of 96 implants placed. Implants were inserted using a two-stage protocol with DDM/rhBMP-2 grafts. Early loading was initiated at two months postoperatively in the mandible and three months in the maxilla. Clinical outcomes evaluated included primary and secondary stability (implant stability quotient values), healing period, bone width, and marginal bone level assessed via cone-beam computed tomography.
Results:
All implants successfully supported final prosthetics with a torque of 50Ncm, without any osseointegration failures. The average healing period was 69.6 days in the mandible and 90.5 days in the maxilla, with significantly higher secondary stability in the mandible (80.7 ± 6.7) compared to the maxilla (73.0 ± 9.2, p < 0.001). Histological analysis confirmed new bone formation and vascularization.
Conclusion
DDM/rhBMP-2 grafting appears to significantly reduce the healing period, enabling early loading with stable and favorable clinical outcomes.
6.Does intradiscal steroid injection accelerate the histological degeneration of the human disc?
Jin Hwan KIM ; Sunhee CHANG ; Byung Ho KIM ; Gyu Heon LEE ; Sung Tan CHO
Osteoporosis and Sarcopenia 2024;10(3):108-113
Objectives:
Intradiscal steroid injection (ISI) use has been proven as a low-risk and rapid treatment for disc degeneration disease (DDD). However, the histological effects of steroids on human discs remain poorly understood. The purpose of this study is to investigate whether ISI induces histologic degeneration of the disc.
Methods:
In this study, a histological analysis was carried out on the nucleus pulposus obtained from 150 patients who underwent posterior lumbar interbody fusion. Among these individuals, 59 received ISI before the surgery, while 91 did not. After staining with hematoxylin and eosin, the histological classification was performed based on chondrocyte proliferation (C1, C2, and C3) and granular matrix change (M1 and M2). Logistic regression analysis was used to identify the main factors influencing chondrocyte proliferation and granular matrix change.Additionally, histological differences between the ISI group and the non-ISI group were analyzed.
Results:
Chondrocyte proliferation and granular matrix changes were not significantly different between the ISI and non-ISI groups. The logistic regression analysis indicated that age is the most significant risk factor for both chondrocyte proliferation (P = 0.02) and granular matrix changes (P < 0.01).
Conclusions
The most crucial factor in disc degeneration is age. ISI does not accelerate the histological degeneration of chondrocyte proliferation and granular matrix. Therefore, the ISI could be considered as a histologically safe alternative in patients with DDD.
7.Bulk Modification with Inorganic Particles and Immobilization of Extracellular Vesicles onto PDO Composite for Facial Rejuvenation
Seung-Woon BAEK ; Dong Min KIM ; Semi LEE ; Duck Hyun SONG ; Gi-Min PARK ; Chun Gwon PARK ; Dong Keun HAN
Tissue Engineering and Regenerative Medicine 2024;21(2):199-208
BACKGROUND:
The skin, a vital organ protecting against microorganisms and dehydration, undergoes structural decline with aging, leading to visible issues such as wrinkles and sagging. Reduced blood vessels exacerbate vulnerability, hindering optimal cellular function and compromising skin health. Polydioxanone (PDO) biomaterials address aging concerns but produce acidic byproducts, causing inflammation. Inorganic particles and nitric oxide (NO) play crucial roles in inhibiting inflammation and promoting skin regeneration. Stem cell-derived extracellular vesicles (EVs) contribute to intercellular communication, offering the potential to enhance cell functions. The study proposes a method to enhance PDO-based medical devices by incorporating inorganic particles and immobilizing EVs, focusing on facial rejuvenation, anti-inflammatory response, collagen formation, and angiogenesis.METHOD: PDO composites with inorganic particles such as magnesium hydroxide (MH) and zinc oxide (ZO) were prepared and followed by EV immobilization. Comprehensive characterization included biocompatibility, anti-inflammation, collagen formation ability, and angiogenesis ability.
RESULTS:
Bulk-modified PDO composites demonstrated even dispersion of inorganic particles, pH neutralization, and enhanced biocompatibility. EVs immobilized on the composite surface exhibited spherical morphology. Inflammationrelated gene expressions decreased, emphasizing anti-inflammatory effects. Collagen-related gene and protein expressions increased, showcasing collagen formation ability. In addition, angiogenic capabilities were notably improved, indicating potential for skin rejuvenation.
CONCLUSION
The study successfully developed and characterized PDO composites with inorganic particles and EVs, demonstrating promising attributes for medical applications. These composites exhibit biocompatibility, anti-inflammatory properties, collagen formation ability, and angiogenic potential, suggesting their utility in skin rejuvenation and tissue engineering. Further research and clinical validation are essential.
9.Current Modalities for Fracture Healing Enhancement
You Seung CHUN ; Dong Hwan LEE ; Tae Gu WON ; Yuna KIM ; Asode Ananthram SHETTY ; Seok Jung KIM
Tissue Engineering and Regenerative Medicine 2022;19(1):11-17
Previously, most fractures have been treated through bone reduction and immobilization. With an increase in the patients’ need for an early return to their normal function, development in surgical techniques and materials have accelerated. However, delayed union or non-union of the fracture site sometimes inhibits immediate return to normal life. To enhance fracture healing, diverse materials and methods have been developed. This is a review on the current modalities of fracture healing enhancement, which aims to provide a comprehensive knowledge regarding fracture healing for researchers and health practitioners.
10.The effect of age, gender, economic state, and urbanization on the temporal trend in sudden cardiac arrest: a nationwide population‑based cohort study
Pil‑Sung YANG ; Daehoon KIM ; Jung‑Hoon SUNG ; Boyoung JOUNG
International Journal of Arrhythmia 2022;23(1):8-
Background:
Sudden cardiac arrest (SCA) has not been well studied in Asian countries. This study investigated the temporal trends in the incidence and outcomes of SCA and the impact of age, gender, economic state, and urbaniza‑ tion on SCA using a nationwide population-based sample cohort of South Korea.
Methods:
In the Korean National Health Insurance Service—Sample Cohort consisting of one million persons from 2003 through 2013, we identified 5,675 (0.56%) patients with SCA using ICD-10 code I46 and I49.0. We evaluated the impact of the age, gender, household income, and urbanization level on the incidence and outcome of SCA.
Results:
During the study period, the overall age- and gender-adjusted annual incidence of SCA increased by 46.9% from 30.9 in 2003 to 45.4 in 2013 (per 100,000 person-years, p < 0.001 for trend). The medical cost per 100,000 personyears also greatly increased about four times (p < 0.001 for trend). The overall adjusted survival to hospital discharge rate increased from 8.9% in 2003 to 13.2% in 2013 (adjusted rate ratio per year 1.05; p < 0.001 for trend). Old age and low household incomes of the population was related to increased SCA and poor survival to hospital discharge rate. The proportion of patients with intensive or advanced therapeutic modalities after SCA greatly increased from 1.6% in 2003 to 10.0% in 2013 (p < 0.001 for trend). This increase was consistent regardless of age, gender, economic state, and urbanization level.
Conclusions
Although the incidence of SCA was increased, the outcome was improved for the decade. However, in the elderly and low-income population, the incidence of SCA continued to rise and survival outcome was not improved.

Result Analysis
Print
Save
E-mail