1.Progress in the study of anti-inflammatory active components with anti-inflammatory effects and mechanisms in Caragana Fabr.
Yu-mei MA ; Ju-yuan LUO ; Tao CHEN ; Hong-mei LI ; Cheng SHEN ; Shuo WANG ; Zhi-bo SONG ; Yu-lin LI
Acta Pharmaceutica Sinica 2025;60(1):58-71
The plants of the genus
2.Correlation between differences in starch gelatinization, water distribution, and terpenoid content during steaming process of Curcuma kwangsiensis root tubers by multivariate statistical analysis.
Yan LIANG ; Meng-Na YANG ; Xiao-Li QIN ; Zhi-Yong ZHANG ; Zhong-Nan SU ; Hou-Kang CAO ; Ke-Feng ZHANG ; Ming-Wei WANG ; Bo LI ; Shuo LI
China Journal of Chinese Materia Medica 2025;50(10):2684-2694
To elucidate the mechanism by which steaming affects the quality of Curcuma kwangsiensis root tubers, methods such as LSCM, RVA, dual-wavelength spectrophotometry, LF-NMR, and LC-MS were employed to qualitatively and quantitatively detect changes in starch gelatinization characteristics, water distribution, and material composition of C. kwangsiensis root tubers under different steaming durations. Based on multivariate statistical analysis, the correlation between differences in gelatinization parameters, water distribution, and terpenoid material composition was investigated. The results indicate that steaming affects both starch gelatinization and water distribution in C. kwangsiensis. During the steaming process, transformations occur between amylose and amylopectin, as well as between semi-bound water and free water. After 60 min of steaming, starch gelatinization and water distribution reached an equilibrium state. The content of amylopectin, the amylose-to-amylopectin ratio, and parameters such as gelatinization temperature, viscosity, breakdown value, and setback value were significantly correlated(P≤0.05). Additionally, the amylose-to-amylopectin ratio was significantly correlated with total free water and total water content(P≤0.05). Steaming induced differences in the material composition of C. kwangsiensis root tubers. Clustering of primary metabolites in the OPLS-DA model was distinct, while secondary metabolites were classified into 9 clusters using the K-means clustering algorithm. Differential terpenoid metabolites such as(-)-α-curcumene were significantly correlated with zerumbone, retinal, and all-trans-retinoic acid(P<0.05). Curcumenol was significantly correlated with isoalantolactone and ursolic acid(P<0.05), while all-trans-retinoic acid was significantly correlated with both zerumbone and retinal(P<0.05). Alpha-tocotrienol exhibited a significant correlation with retinal and all-trans-retinoic acid(P<0.05). Amylose was extremely significantly correlated with(-)-α-curcumene, curcumenol, zerumbone, retinal, all-trans-retinoic acid, and α-tocotrienol(P<0.05). Amylopectin was significantly correlated with zerumbone(P<0.05) and extremely significantly correlated with(-)-α-curcumene, curcumenol, zerumbone, retinal, all-trans-retinoic acid, and 9-cis-retinoic acid(P<0.01). The results provide scientific evidence for elucidating the mechanism of quality formation of steamed C. kwangsiensis root tubers as a medicinal material.
Curcuma/chemistry*
;
Starch/chemistry*
;
Multivariate Analysis
;
Water/chemistry*
;
Terpenes/analysis*
;
Plant Roots/chemistry*
;
Plant Tubers/chemistry*
;
Drugs, Chinese Herbal/chemistry*
3.Comparison between sinking and floating fresh Rehmanniae Radix samples by UHPLC-Q-Orbitrap HRMS, fingerprinting, and chemometrics.
Shi-Long LIU ; Hong-Wei ZHANG ; Zhen-Ling ZHANG ; Han-Ting JIA ; Zhi-Jun GUO ; Rui-Sheng WANG ; Hong-Wei ZHANG ; Shuo WANG ; Yi-Jian ZHONG
China Journal of Chinese Materia Medica 2025;50(14):3918-3929
This study aims to explore the scientific connotation of sinking Rehmanniae Radix has the best quality and compare the quality between floating and sinking fresh Rehmanniae Radix samples. Ultra-performance liquid chromatography tandem quadrupole electrostatic field Orbitrap high-resolution mass spectrometry(UHPLC-Q-Orbitrap HRMS) was employed to detect the chemical components in floating and sinking fresh Rehmanniae Radix samples. The fingerprint of fresh Rehmanniae Radix was established by high performance liquid chromatography(HPLC), and four index components were determined simultaneously. The cluster analysis, principal component analysis(PCA), and orthogonal partial least squares-discriminant analysis(OPLS-DA) were conducted to compare the quality of floating and sinking fresh Rehmanniae Radix samples. An evaporative light-scattering detector was used to compare the content of five sugars. The extract yield and drying rate were determined, and the quality connotation of sinking Rehmanniae Radix has the best quality was explained by multiple indicators. A total of 41 components were preliminarily identified from fresh Rehmanniae Radix by UHPLC-Q-Orbitrap HRMS, including 7 iridoid glycosides, 9 phenylethanol glycosides, 6 amino acids, 4 sugars, 3 phenolic acids, 5 nucleosides, 3 organic acids, 1 ionone, 1 furan, 1 coumarin, and 1 phenylpropanoid. The results showed that the main chemical components were consistent between floating and sinking fresh Rehmanniae Radix. Nine common peaks were identified in the fingerprints of 15 batches of floating and sinking fresh Rehmanniae Radix samples, and the similarity of fingerprints was greater than 0.9. The cluster analysis, PCA, and OPLS-DA classified floating and sinking fresh Rehmanniae Radix sasmples into two categories, indicating differences in the quality between them. The total content of catalpol, rehmannioside D, ajugol, and verbascoside in sinking fresh Rehmanniae Radix samples was higher than that in floating samples of the same batch and specification, and the main differential component was catalpol. The total content of fructose, glucose, sucrose, raffinose, and stachyose in sinking fresh Rehmanniae Radix samples was higher than that in floating samples of the same batch and specification, and the main differential component was stachyose. The extract yield and drying rate of the sinking samples were higher than those of floating samples. This study preliminarily showed that floating and sinking fresh Rehmanniae Radix samples had the same components but great differences in the content of medicinal substance basis. The total content of four glycosides and five sugars, extract yield, and drying rate of sinking fresh Rehmanniae Radix samples is higher than that of floating samples of the same batch and specification. These findings, to a certain extent, explains the scientificity of sinking Rehmanniae Radix has the best quality recorded in ancient books and provide a reference for the quality control and clinical application of fresh Rehmanniae Radix.
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Rehmannia/chemistry*
;
Chemometrics
;
Mass Spectrometry/methods*
;
Quality Control
;
Principal Component Analysis
;
Plant Extracts
4.Identification of critical quality attributes related to property and flavor of Jianwei Xiaoshi Tablets based on T1R2/T1R3/TRPV1-HEMT biosensor.
Dong-Hong LIU ; Yan-Yu HAN ; Jing WANG ; Hai-Yang LI ; Xin-Yu GUO ; Hui-Min FENG ; Han HE ; Shuo-Shuo XU ; Zhi-Jian ZHONG ; Zhi-Sheng WU
China Journal of Chinese Materia Medica 2025;50(14):3930-3937
The quality of traditional Chinese medicine(TCM) is a critical foundation for ensuring the stability of its efficacy, as well as the safety and effectiveness of its clinical use. The identification of critical quality attributes(CQAs) is one of the core components of TCM preparation quality control. This study focuses on Jianwei Xiaoshi Tablets and explores their CQAs related to property and flavor from the perspective of taste receptor proteins. Three taste receptor proteins, T1R2, T1R3, and TRPV1, were selected, and a biosensor based on high-electron-mobility transistor(HEMT) was constructed to detect the interactions between Jianwei Xiaoshi Tablets and taste receptor proteins. Simultaneously, liquid chromatography-mass spectrometry(LC-MS) technology was used to analyze the chemical composition of Jianwei Xiaoshi Tablets. In examining the interaction strength, the results indicated that the interaction between Jianwei Xiaoshi Tablets and TRPV1 protein was the strongest, followed by T1R3, with the interaction with T1R2 being relatively weaker. By combining biosensing technology with LC-MS, 16 chemical components were identified from Jianwei Xiaoshi Tablets, among which six were selected as CQAs for sweetness and seven for pungency. Further validation experiments demonstrated that CQAs such as hesperidin and hesperetin had strong interactions with their corresponding taste receptor proteins. Through the combined use of multiple technological approaches, this study successfully determined the property and flavor-related CQAs of Jianwei Xiaoshi Tablets. It provides novel ideas and approach for the identification of CQAs in TCM preparations and offers comprehensive theoretical support for TCM quality control, contributing to the improvement and development of TCM preparation quality control systems.
Drugs, Chinese Herbal/chemistry*
;
Biosensing Techniques/methods*
;
TRPV Cation Channels/chemistry*
;
Tablets/chemistry*
;
Receptors, G-Protein-Coupled/genetics*
;
Quality Control
;
Taste
;
Humans
;
Mass Spectrometry
5.Comparative Study of Diffuse Large B-Cell Lymphoma and Reactive Lymphoid Hyperplasia Lymph Node Derived Mesenchymal Stem Cells.
Yu-Shuo MA ; Zhi-He LIU ; Yang SUN ; Yu-Hang ZHANG ; Wen-Qiu WANG ; Li-Sheng WANG ; Xia ZHAO
Journal of Experimental Hematology 2025;33(5):1516-1523
OBJECTIVE:
To investigate the biological behavior, differentiation ability, and differential gene expression of lymph node mesenchymal stem cells (MSCs) in patients with diffuse large B-cell lymphoma (DLBCL) and reactive lymphoid hyperplasia (RLH), providing a theoretical basis for clinical chemotherapy resistance.
METHODS:
Lymph node MSCs from patients with DLBCL and RLH were separated, passaged and cultured. The cell morphology and growth status were observed. Flow cytometry was performed to detect the immune phenotype of MSCs. The in vitro directed differentiation ability of the two types of MSCs was observed. High-throughput sequencing was used to analyze the differential gene expression and enrichment of two groups of MSCs.
RESULTS:
The lymph node MSCs of patients with DLBCL and RLH had similar cell morphology and growth characteristics, and both groups of MSCs expressed CD90, CD105, and CD73 on the cell surface. Compared with lymph node MSCs derived from patients with RLH, lymph node MSCs derived from DLBCL patients showed stronger osteogenic and adipogenic differentiation abilities. High-throughput sequencing results displayed that lymph node MSCs derived from DLBCL patients significantly upregulated some genes such as TOP2A, LFNG, GRIA3, SEC14L2, SPON2, AURKA, LRRC15, FOXD1, HOXC9, CDC20 and remarkably downregulated some genes such as TBC1D8, LDLR, PCDHAC2, POLH, PKP2, ANKRD37, DMKN, HSD11B1, ARHGAP20, PTGS1,etc.
CONCLUSION
Lymph node MSCs in DLBCL patients exhibit unique biological behavior and gene expression profiles, which may be closely related to clinical chemotherapy resistance.
Humans
;
Mesenchymal Stem Cells/cytology*
;
Lymphoma, Large B-Cell, Diffuse/pathology*
;
Cell Differentiation
;
Lymph Nodes/pathology*
;
Pseudolymphoma/pathology*
6.Correlation between CRAB Symptoms and Antioxidant Enzyme Activity in Patients with Multiple Myeloma
Xiao-Xu ZHANG ; You-Zhi ZHANG ; Yu-Shuo MA ; Wei WANG
Journal of Experimental Hematology 2024;32(2):493-498
Objective:To investigate the relationship between clinical indicators of CRAB symptoms and antioxidant enzyme activity in patients with multiple myeloma(MM).Methods:The activity of catalase(CAT),glutathione peroxidase(GPX),and superoxide dismutase(SOD)in the bone marrow supernatants of 44 patients with MM and 12 patients with non-malignant hematological diseases was detected by colorimetric assay,and then the differences in the activity of antioxidant enzymes between the two groups were compared.Furthermore,the relationship between the activity of antioxidant enzymes in the MM group and the levels of serum calcium,serum creatinine(Scr),hemoglobin(Hb),alkaline phosphatase(ALP)as well as bone lesions were analyzed.Results:The antioxidant enzyme activity was lower in MM patients compared with the control group(P<0.05).When the concentrations of serum calcium and ALP were higher than the normal levels,Hb was lower than 85 g/L,and there were multiple bone lesions,the activity of CAT,SOD and GPX was significantly declined(P<0.05);When the concentration of Scr≥177 μmol/L,the activity of GPX was significantly declined(P<0.05).Regression analyses showed that CAT,SOD and GPX were negatively correlated with serum calcium(r=-0.538,r=-0.456,r=-0.431),Scr(r=-0.342,r=-0.384,r=-0.463),and ALP(r=-0.551,r=-0.572,r=-0.482).Conclusion:The activity of antioxidant enzymes,including CAT,SOD and GPX,were decreased in patients with MM and they were negatively correlated with some clinical indicators of CRAB symptoms(such as serum calcium,Scr,and ALP),which suggests that promoting the activity of antioxidant enzymes may be beneficial to treat the CRAB symptoms of the patients with MM.
7.Simultaneous content determination of fifteen constituents in Binglang Sixiao Pills by HPLC
Yuan WANG ; Yuan-Shuo YANG ; Si-Zhi LI ; Jia-Meng ZHAO
Chinese Traditional Patent Medicine 2024;46(8):2493-2498
AIM To establish an HPLC method for the simultaneous content determination of gallic acid,catechin,epicatechin,rhein 8-O-β-D-glucoside,chlorogenic acid,chrysophanol 8-O-β-D-glucoside,emodin-8-O-β-D-glucoside,emodin-3-methyl ether-8-O-β-D-glucoside,aloe emodin,rhein,cyperotundone,luteolin,α-cyperone,emodin,chrysophanol and emodin-3-methyl ether in Binglang Sixiao Pills.METHODS The analysis was performed on a 30℃thermostatic Kromasil C18 column(250 mm×4.6 mm,5 μm),with the mobile phase comprising of methanol-0.1%formic acid flowing at 1.0 mL/min in a gradient elution manner,and the detection wavelength was set at 260 nm.Subsequently,cluster analysis and principal component analysis were made.RESULTS Fifteen constituents showed good linear relationships within their own ranges(r>0.999 0),whose average recoveries were 96.00%-101.00%%with the RSDs of 0.50%-1.50%.Various batches of samples were clustered into two categories,and four principal components demonstrated the accumulative variance contribution rate of 90.004%.CONCLUSION This simple,accurate and reproducible method can be used for the quality control of Binglang Sixiao Pills.
8.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
9.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
10.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.

Result Analysis
Print
Save
E-mail