1.Neurotoxicity Mechanism of Dictamni Cortex Based on Network Toxicology and Metabolomics
Xiaomin XU ; Jiameixue WO ; Suxia JIA ; Wenkai HU ; Fang LU ; Shumin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(20):31-39
ObjectiveThis study aims to explore the neurotoxicity mechanism of Dictamni Cortex by integrating network toxicology and metabolomics techniques. MethodsThe neurotoxicity targets induced by Dictamni Cortex were screened by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Traditional Chinese Medicine Information Database (TCM-ID), and Comparative Toxicogenomics Database (CTD). The target predictions of the components were performed by the Swiss Target Prediction tool. Neurotoxicity-related targets were collected from the Pharmacophore Mapping and Potential Target Identification Platform (PharmMapper), GeneCards Human Gene Database (GeneCards), DisGeNET Disease Gene Network (DisGeNET), and Online Mendelian Inheritance in Man (OMIM), and the intersection targets were identified. Protein-protein interaction (PPI) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and Gene Ontology (GO) enrichment analysis were conducted. A "drug-compound-toxicity target-pathway" network was constructed via Cytoscape software to display the core regulatory network. Based on the prediction results, the neurotoxicity mechanism of Dictamni Cortex in mice was verified by using hematoxylin-eosin (HE) staining, Nissl staining, enzyme-linked immunosorbent assay (ELISA), quantitative real-time fluorescence polymerase chain reaction (Real-time PCR), and Western blot. The effects of Dictamni Cortex on the metabolic profile of mouse brain tissue were further explored by non-targeted metabolomics. ResultsNetwork toxicology screening identified 13 compounds and 175 targets in Dictamni Cortex that were related to neurotoxicity. PPI network analysis revealed that serine/threonine-protein kinase (Akt1) and tumor protein 53 (TP53) were the core targets. Additionally, GO/KEGG enrichment analysis indicated that Dictamni Cortex may regulate the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and affect oxidative stress and cell apoptosis, thereby inducing neural damage. The "Dictamni Cortex-compound-toxicity target-pathway-neural damage" network showed that dictamnine, phellodendrine, and fraxinellone may be the toxic compounds. Animal experiments showed that compared with those in the blank group, the hippocampal neurons in the brain tissue of mice treated with Dictamni Cortex were damaged. The level of superoxide dismutase (SOD) and acetylcholine (ACh) in the brain tissue was significantly reduced, while the content of malondialdehyde (MDA) was significantly increased. The level of Akt1 and p-Akt1 mRNAs and proteins in the brain tissue was significantly decreased, while the level of TP53 was significantly increased. Non-targeted metabolomics results showed that Dictamni Cortex could disrupt the level of 40 metabolites in mouse brain tissue, thereby regulating the homeostasis of 13 metabolism pathways, including phenylalanine, glycerophospholipid, and retinol. Combined analysis revealed that Akt1, p-Akt1, and TP53 were significantly correlated with phenylalanine, glycerophospholipid, and retinol metabolites. This suggested that Dictamni Cortex induced neurotoxicity in mice by regulating Akt1, p-Akt1, and TP53 and further modulating the phenylalanine, glycerophospholipid, and retinol metabolism pathways. ConclusionDictamni Cortex can induce neurotoxicity in mice, and its potential mechanism may be closely related to the activation of oxidative stress, inhibition of the PI3K/Akt signaling pathway, and regulation of phenylalanine, glycerophospholipid, and retinol metabolism pathways.
2.Effect of Dictamni Cortex on Intestinal Barrier Damage by Untargeted Metabolomics and Targeted Metabolomics for Short-chain Fatty Acids
Xiaomin XU ; Donghua YU ; Yu WANG ; Pingping CHEN ; Jiameixue WO ; Suxia JIA ; Wenkai HU ; Fang LU ; Shumin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(20):40-47
ObjectiveThis study aims to investigate the effect of Dictamni Cortex on intestinal barrier damage in rats and its mechanism by untargeted metabolomics and targeted metabolomics for short-chain fatty acids (SCFAs). MethodsRats were randomly divided into a control group, a high-dose group of Dictamni Cortex (8.1 g·kg-1), a medium-dose group (2.7 g·kg-1), and a low-dose group (0.9 g·kg-1). Except for the control group, the other groups were administered different doses of Dictamni Cortex by gavage for eight consecutive weeks. Hematoxylin-eosin (HE) staining was used to observe the pathological changes in the ileal tissue. Enzyme-linked immunosorbent assay (ELISA) was employed to detect the level of cytokines, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β), in the ileal tissue of rats. Quantitative real-time fluorescence polymerase chain reaction (Real-time PCR) technology was used to detect the expression level of tight junction proteins, including zonula occludens-1 (ZO-1), Occludin, and Claudin-1 mRNAs, in the ileal tissue of rats to preliminarily explore the effects of Dictamni Cortex on intestinal damage. The dose with the most significant toxic phenotype was selected to further reveal the effects of Dictamni Cortex on the metabolic profile of ileal tissue in rats by non-targeted metabolomics combined with targeted metabolomics for SCFAs. ResultsCompared with the control group, all doses of Dictamni Cortex induced varying degrees of pathological damage in the ileum, increased TNF-α (P<0.01), IL-6 (P<0.01), and IL-1β (P<0.01) levels in the ileal tissue, and decreased the expression level of ZO-1 (P<0.05, P<0.01), Occludin (P<0.01), and Claudin-1 (P<0.05) in the ileal tissue, with the high-dose group showing the most significant toxic phenotypes. The damage mechanisms of the high-dose group of Dictamni Cortex on the ileal tissue were further explored by integrating non-targeted metabolomics and targeted metabolomics for SCFAs. The non-targeted metabolomics results showed that 21 differential metabolites were identified in the control group and the high-dose group. Compared with that in the control group, after Dictamni Cortex intervention, the level of 14 metabolites was significantly increased (P<0.05, P<0.01), and the level of seven metabolites was significantly decreased (P<0.05, P<0.01) in the ileal contents. These metabolites collectively acted on 10 related metabolic pathways, including glycerophospholipids and primary bile acid biosynthesis. The quantitative data of targeted metabolomics for SCFAs showed that Dictamni Cortex intervention disrupted the level of propionic acid, butyric acid, acetic acid, caproic acid, isobutyric acid, isovaleric acid, valeric acid, and isocaproic acid in the ileal contents of rats. Compared with those in the control group, the level of isobutyric acid, isovaleric acid, and valeric acid were significantly increased, while the level of propionic acid, butyric acid, and acetic acid were significantly decreased in the ileal contents of rats after Dictamni Cortex intervention (P<0.05, P<0.01). ConclusionDictamni Cortex can induce intestinal damage by regulating glycerophospholipid metabolism, primary bile acid biosynthesis, and metabolic pathways for SCFAs.
3.Analysis of diagnosis and treatment of IgG4-related disease involving the nasal cavity and skull base(with 8 case reports).
Wei ZHONG ; Xuan YUAN ; Lai MENG ; Jiaxin JIA ; Shaobing XIE ; Shumin XIE ; Junyi ZHANG ; Hua ZHANG ; Weihong JIANG ; Zhihai XIE
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(6):553-558
Objective:To investigate the clinical diagnosis and treatment of IgG4-related disease(IgG4-RD) primarily involving the nasal cavity and skull base. Methods:A retrospective analysis was conducted on the clinical data of 8 patients with IgG4-RD primarily involving the nasal cavity and skull base who visited the Nasal and Skull Base Surgery Department at Xiangya Hospital from October 2017 to January 2024. The cohort comprised 4 males and 4 females, aged 8 to 69 years. Clinical data, laboratory examination results, imaging findings, histopathological results, and treatment plans were collected. The clinical manifestations, diagnosis, treatment and follow-up results of IgG4-RD primarily involving nasal cavity and skull base were summarized and previous literature were also reviewed. Results:The initial symptoms in the 8 patients included nasal congestion, headache, sensory function decline, and facial deformities. Three patients also had parotid and pulmonary involvement. Among the 8 patients, 4 underwent partial surgical resection combined with glucocorticoid therapy; 1 underwent partial surgical resection combined with glucocorticoid and immunosuppressant therapy; 1 received glucocorticoid therapy alone; and 2 received glucocorticoid combined with immunosuppressant therapy. Follow-up was conducted one month after treatment, lasting from 5 to 79 months. During the follow-up period, recurrence was observed in 1 patient treated with glucocorticoid combined with immunosuppressants and in 1 patient treated with glucocorticoid alone, while the other 6 patients achieved significant remission. Conclusion:The diagnosis of nasal cavity and skull base IgG4-RD requires the combination of histopathology, laboratory tests, and imaging results. Treatment primarily includes glucocorticoids or combined immunosuppressants. For patients with significant compression symptoms, sensory function impairment, or facial deformities, surgical resection is an important treatment option. Given the high risk of recurrence, early intervention, active treatment, and long-term follow-up are crucial.
Humans
;
Male
;
Skull Base/pathology*
;
Female
;
Middle Aged
;
Retrospective Studies
;
Aged
;
Nasal Cavity/pathology*
;
Adult
;
Immunoglobulin G4-Related Disease/therapy*
;
Immunoglobulin G
;
Child
;
Young Adult
;
Adolescent
4.Real-world efficacy and safety of azvudine in hospitalized older patients with COVID-19 during the omicron wave in China: A retrospective cohort study.
Yuanchao ZHU ; Fei ZHAO ; Yubing ZHU ; Xingang LI ; Deshi DONG ; Bolin ZHU ; Jianchun LI ; Xin HU ; Zinan ZHAO ; Wenfeng XU ; Yang JV ; Dandan WANG ; Yingming ZHENG ; Yiwen DONG ; Lu LI ; Shilei YANG ; Zhiyuan TENG ; Ling LU ; Jingwei ZHU ; Linzhe DU ; Yunxin LIU ; Lechuan JIA ; Qiujv ZHANG ; Hui MA ; Ana ZHAO ; Hongliu JIANG ; Xin XU ; Jinli WANG ; Xuping QIAN ; Wei ZHANG ; Tingting ZHENG ; Chunxia YANG ; Xuguang CHEN ; Kun LIU ; Huanhuan JIANG ; Dongxiang QU ; Jia SONG ; Hua CHENG ; Wenfang SUN ; Hanqiu ZHAN ; Xiao LI ; Yafeng WANG ; Aixia WANG ; Li LIU ; Lihua YANG ; Nan ZHANG ; Shumin CHEN ; Jingjing MA ; Wei LIU ; Xiaoxiang DU ; Meiqin ZHENG ; Liyan WAN ; Guangqing DU ; Hangmei LIU ; Pengfei JIN
Acta Pharmaceutica Sinica B 2025;15(1):123-132
Debates persist regarding the efficacy and safety of azvudine, particularly its real-world outcomes. This study involved patients aged ≥60 years who were admitted to 25 hospitals in mainland China with confirmed SARS-CoV-2 infection between December 1, 2022, and February 28, 2023. Efficacy outcomes were all-cause mortality during hospitalization, the proportion of patients discharged with recovery, time to nucleic acid-negative conversion (T NANC), time to symptom improvement (T SI), and time of hospital stay (T HS). Safety was also assessed. Among the 5884 participants identified, 1999 received azvudine, and 1999 matched controls were included after exclusion and propensity score matching. Azvudine recipients exhibited lower all-cause mortality compared with controls in the overall population (13.3% vs. 17.1%, RR, 0.78; 95% CI, 0.67-0.90; P = 0.001) and in the severe subgroup (25.7% vs. 33.7%; RR, 0.76; 95% CI, 0.66-0.88; P < 0.001). A higher proportion of patients discharged with recovery, and a shorter T NANC were associated with azvudine recipients, especially in the severe subgroup. The incidence of adverse events in azvudine recipients was comparable to that in the control group (2.3% vs. 1.7%, P = 0.170). In conclusion, azvudine showed efficacy and safety in older patients hospitalized with COVID-19 during the SARS-CoV-2 omicron wave in China.
5.FOS expression in oxytocin and vasopressin positive neurons in paraventricular nucleus of mice induced by diabetes
Shumin WANG ; Peng JIA ; Shuting REN ; Siting LYU ; Ting ZHANG ; Yanling YANG ; Juan SHI
Chinese Journal of Neuroanatomy 2024;40(1):35-42
Objective:To explore the feature of FOS expression in oxytocin-and vasopressin-positive neurons in the hypothalamic paraventricular nucleus(PVN)under different status of diabetes mellitus(DM).Methods:Intraperito-neal injection of vehicle or STZ in mice was conducted to establish control or diabetes model.Mechanical sensitivity was evaluated by von Frey filament tests to distinguish diabetic neuropathic pain(DNP)from without-pain group(DWP).The expression of FOS,oxytocin(OXT)-and vasopressin(VP)-positive neurons,as well as their double labeling was detected by immunohistochemical and immunofluorescent staining.Cell counting and comparison were made in groups.Results:FOS expression was easily detected in the PVN in the three groups(Control group,DNP group and DWP group)at 7 days,while that in DWP and DNP groups at 28 days was hardly detectable,with the number being signifi-cantly different from the 7 days group(P<0.05 or 0.001).Likewise,compared with the control group,immunofluo-rescent signals for VP and OXT staining in the DNP and DWP groups also showed a trend of weakening as the modeling time increased(P<0.05).The cell counting after double staining for VP or OXT with FOS showed that,in the DWP group at 7 days,the number of VP and FOS double-labeled neurons was 74.33±22.10,accounting for(56.64± 7.52)%of VP-positive cells,whereas the double labeling rate for OXT and FOS was only(10.44±3.14)%.In the DNP group at 7 days,the number of OXT and FOS double-labeled neurons was 51.00±31.80,accounting for(18.50 ±9.51)%of OXT-positive neurons,whereas the double labeling rate for VP and FOS was only(9.34±3.27)%.In contrast to these changes in 7 days group,the expression of FOS decreased sharply in the group of 28 days,thereby al-most no double-labeled neurons.Conclusion:The plasticity changes of oxytocin-and vasopressin-positive neurons in the PVN are different depending on the status of pain and non-pain,and the stage of disease progression.Understanding the changes is of great significance for unravelling the neural mechanism of diabetes and its complications.
6.Research progress of traditional Chinese medicine in regulating Nrf2/HO-1 signaling pathway to interfere with myocardial ischemia-reperfusion injury
Suxia JIA ; Xiaomin XU ; Huicong YANG ; Shumin LIU
China Pharmacy 2024;35(1):124-128
Myocardial ischemia-reperfusion injury (MIRI) is a serious complication of revascularization in patients with myocardial infarction. The nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway plays an important role in the pathological process of MIRI. Currently,research has found that traditional Chinese medicine has a good effect on myocardial injury caused by ischemia-reperfusion. Based on the Nrf2/HO-1 signaling pathway,this article summarizes the action mechanism of traditional Chinese medicine formulas and monomers in intervening with MIRI. It is found that traditional Chinese medicine formulas (Yixin formula,Wenyang tongmai formula,Dingxin formula Ⅰ),monomers such as terpenoids (ginkgolides, astragaloside Ⅳ,ginsenosides),phenols (brazilin,hematoxylin A,resveratrol) and quinones (aloe,emodin) can alleviate MIRI by activating the Nrf2/HO-1 signaling pathway,inhibiting oxidative stress and inflammatory reactions,etc.
7.Expression of Midkine in cholangiocarcinoma and its value in predicting prognosis based on bioinformatics analysis
Yueyue GU ; Shumin YU ; Xiujuan CHANG ; Xudong GAO ; Jiagan HUANG ; Xiaodong JIA ; Zhen ZENG
Journal of Clinical Hepatology 2024;40(7):1428-1437
Objective To investigate the expression of Midkine(MDK)in cholangiocarcinoma(CCA)and its value in predicting the prognosis of CCA,as well as the potential mechanism of the effect of MDK on the progression of CCA.Methods The data of CCA samples were obtained from TCGA database to analyze the difference in the expression of MDK between cancer tissue and paracancerous tissue and its association with clinical features,and the data collected from GEO database and 11 CCA patients who underwent surgical resection in The Fifth Medical Center of Chinese PLA General Hospital from June 2018 to September 2021 were used for validation.STRING and Cytoscape were used to construct a protein-protein interaction network,and gene ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analyses were used to investigate the biological functions and tumor-related pathways involving MDK-related genes.In addition,TIMER and TISIDB databases were used to analyze the correlation between MDK expression and immune cell infiltration in CCA tissue.The independent-samples t test or the Mann-Whitney U test was used for comparison of continuous data between two groups,and the Fisher's exact test was used for comparison of categorical data between two groups.The Kaplan-Meier method was used to plot survival curves,and the Log-rank test was used for comparison between groups.The Spearman correlation analysis was used to investigate the correlation between two variables.Results The expression level of MDK in cancer tissue and paracancerous tissue of CCA patients was compared based on TCGA database,and the results of the non-paired and paired analyses showed that the expression level of MDK in CCA tumor tissue was significantly higher than that in paracancerous tissue(P<0.001).Transcriptome sequencing was performed for the tumor tissue and its corresponding paracancerous tissue from 11 CCA patients,and the results showed that the expression level of MDK in CCA tumor tissue was significantly higher than that in corresponding paracancerous tissue(P<0.01).High expression of MDK was associated with lymph node metastasis(P=0.045)and vascular invasion(P=0.044).Survival analysis showed that compared with the CCA patients with low MDK expression,the CCA patients with high MDK expression had significantly shorter overall survival time(χ2=5.30,P=0.028)and disease-specific survival time(χ2=6.25,P=0.019).The GO and KEGG enrichment analyses showed that the 30 MDK-related genes were closely associated with ubiquitin-mediated proteolysis and affected the prognosis of CCA patients.The TIMER analysis showed that the expression level of MDK was positively correlated with the infiltration of B cells(r=0.356,P=0.035 6)and dendritic cells(r=0.409,P=0.014 7)in tumor microenvironment of CCA;the TISIDB analysis showed that the expression level of MDK was positively correlated with CXCL16(r=0.465,P=0.004 67)and was negatively correlated with CXCL12(r=-0.389,P=0.019 7)and CXCR5(r=-0.393,P=0.018 5),and it was also negatively correlated with the immune checkpoint regulators VTCN1(r=-0.393,P=0.018 3),LTA(r=-0.380,P=0.022 7),and PVR(r=-0.350,P=0.037 3).Conclusion High expression of MDK is associated with poor prognosis in CCA patients,and MDK has the potential of being used as a molecular marker for predicting the prognosis of CCA.MDK may promote the development and progression of CCA by regulating ubiquitin-mediated proteolysis and the infiltration of B cells and dendritic cells.
8.Exploring the mechanism of acute liver injury induced by Cortex dictamni based on network pharmacology and in vivo experiments
Wenkai HU ; Xiaomin XU ; Xin JIANG ; Jiameixue WO ; Suxia JIA ; Shumin LIU ; Fang LU
China Pharmacist 2024;27(7):1089-1098
Objective To explore the mechanism of acute liver injury induced by Cortex dictamni through network pharmacology and in vivo experiment in animal.Methods The chemical constituents and targets of Cortex dictamni were retrieved from TCMSP,TCMIP and SwissTargetPrediction databases,and the related targets of liver injury diseases were identified through GeneCards and CTD databases.The protein interaction network of the intersection targets was analyzed by STRING database and the core targets were selected.The GO function and KEGG pathway enrichment analysis were completed by DAVID database,and the multi-level association network diagram of"drug-component-target"was constructed by Cytoscape software.In the animal study,Cortex dictamni was administered to mice at a dosage of 92.7 g/(kg·d)via intragastric administration,and the biological samples were collected after 7 days.The pathological changes of liver were observed by hematoxylin-eosin(HE),Masson and Oil Red O staining.The expression levels of alanine aminotransferase(ALT),aspartate aminotransferase(AST),alkaline phosphatase(ALP),and lactate dehydrogenase(LDH)in serum,as well as malondialdehyde(MDA),superoxide dismutase(SOD),tumor necrosis factor-α(TNF-α),and interleukin(IL)-1β in liver tissues,were quantified using enzyme-linked immunosorbent assay(ELISA).The expressions of protein kinase B1(AKT1),IL-6,TNF-α,tumor protein p53(TP53),cystatin 3(CASP3),and IL-1β mRNA in liver tissues were determined using real-time quantitative reverse transcription PCR(qRT-PCR).Molecular docking was employed to verify the binding affinity of potentially toxic components to their respective targets.Results A total of 14 chemical constituents,244 predicted targets and 202 intersection targets with liver injury were obtained.The GO biological process analysis mainly involved positive regulation of gene expression,negative regulation of apoptosis process.KEGG pathway enrichment analysis mainly included cancer pathway and PI3K-Akt,TNF,IL-17 signaling pathways.The pathological sections revealed severe hemorrhage,a considerable amount of hepatocyte necrosis,nuclear fragmentation or dissolution in the liver tissues of mouse with HE staining after the administration of Cortex dictamni.Masson staining showed evident fibrosis in the liver tissues,while Oil Red O staining indicated a substantial production of lipid droplets.Compared with the control group,the ELISA results demonstrated a significant increase in serum AST,ALT,ALP,LDH levels,as well as hepatic MDA,TNF-α,and IL-1β levels(P<0.05),and a decrease in hepatic SOD levels(P<0.05)in the treated group.The qRT-PCR results indicated a significant elevation in the expression levels of relevant mRNAs in the liver tissues of the treated mice(P<0.05).Molecular docking showed that the potentially toxic components of obacunone,dictamnine and fraxinellon had good binding affinity to AKT1,IL-6,TNF-α,TP53,CASP3 and IL-1β.Conclusion Obacunone,dictamnine,fraxinellon,and limonin might be the potential toxic components of acute liver injury induced by Cortex dictamni in mice.Cortex dictamni could act on the liver by changing the expressions of AKT1,IL-6,TNF-α,TP53,CASP3,IL-1β and other proteins,affecting energy metabolism,cell differentiation,inflammation,oxidative stress and immunity,leading to liver injury.
9.Research progress on chemical constituents,pharmacological effects and toxicity of Dictamni cortex
Wenkai HU ; Xiaomin XU ; Xin JIANG ; Jiameixue WO ; Suxia JIA ; Shumin LIU ; Fang LU
China Pharmacist 2024;28(10):252-267
Dictamni cortex is the root bark of Rutaceae plants.It is the main medicinal part and the key drug of 'Zhuhuang Fengbi'.It has the effects of clearing heat and detoxifying,dispelling wind and drying dampness,and relieving itching.Dictamni cortex mainly contains 228 chemical components such as alkaloids,sesquiterpenes,limonoids,fatty acids,volatile oils,flavonoids,steroids,etw.Its pharmacological activities in vivo and in vitro include antibacterial activity,anti-inflammatory activity,hepatoprotective activity,cardiovascular protection activity,insecticidal activity,anticancer activity,anti-allergic activity,and improvement of gastrointestinal activity.It has been reported that Dictamni cortex also has potential hepatotoxicity,among which dictamnine,fraxinellone and limonin compounds are potential hepatotoxic components.In this paper,the chemical constituents,pharmacological effects and toxicity of Dictamni cortex are reviewed by consulting domestic and foreign literature,to provide theoretical support for the clinical rational application and related product development of Dictamni cortex.
10.Improved outcomes in E2A::HLF positive B-cell acute lymphoblastic leukemia by chimeric antigen receptor T cell therapy and BCL-2 inhibitor.
Shumin CHEN ; Ye LI ; Zheng WANG ; Lin FENG ; Yueping JIA ; Xiaodong MO ; Yu WANG ; Qian JIANG ; Xiaojun HUANG ; Yueyun LAI
Chinese Medical Journal 2023;136(11):1382-1384

Result Analysis
Print
Save
E-mail